Сравнение Big Data решений для аналитической обработки больших объемов биомедицинской информации (Игорь Сухоруков, SECR-2018) — различия между версиями
Материал из 0x1.tv
StasFomin (обсуждение | вклад) |
StasFomin (обсуждение | вклад) |
||
Поэтому на помощь в обработке больших данных бизнесу приходит старый добрый язык запросов SQL. В докладе рассмотрим существующие SaaS и open source решения AWS Redshift, Greenplum, CitusDB, Druid, ClickHouse, CrateDB, PrestoDB, Apache Drill, Dremio, Apache HAWQ. Рассмотрим их слабые и сильные стороны и сравним их области применимости. А также расскажу как наш отдел трансформирует и обрабатывает большие объемы данных об ортодонтическом лечении используя инфраструктуру Amazon Web Service.
</blockquote>
{{VideoSection}}
{{vimeoembed|240323012|800|450}}
{{youtubelink|NMXrZhwqf8s}}
{{letscomment}}
{{SlidesSection}}
[[File:Сравнение Big Data решений для аналитической обработки больших объемов биомедицинской информации (Игорь Сухоруков, SECR-2018).pdf|left|page=-|300px]]
{{----}}
[[File:{{#setmainimage:Сравнение Big Data решений для аналитической обработки больших объемов биомедицинской информации (Игорь Сухоруков, SECR-2018)!.jpg}}|center|640px]]
{{LinksSection}}
* [https://2018.secrus.org/program/submitted-presentations/sequence-diagram-generated-from-bdd-test/ Talks page on SECR site]
<!-- <blockquote>[©]</blockquote> --> | |||
Текущая версия на 08:35, 20 октября 2025
- Докладчик
- Игорь Сухоруков
Все больше компаний в тренде и готовы анализировать все доступные источники информации, отвечать на насущные вопросы бизнеса, находить закономерности и планировать изменения продукта. Теперь это касается не только корпораций, но и малые/средние предприятия которые не могут позволить себе длительный time to market и большой штат разработчиков bigdata решений.
Поэтому на помощь в обработке больших данных бизнесу приходит старый добрый язык запросов SQL. В докладе рассмотрим существующие SaaS и open source решения AWS Redshift, Greenplum, CitusDB, Druid, ClickHouse, CrateDB, PrestoDB, Apache Drill, Dremio, Apache HAWQ. Рассмотрим их слабые и сильные стороны и сравним их области применимости. А также расскажу как наш отдел трансформирует и обрабатывает большие объемы данных об ортодонтическом лечении используя инфраструктуру Amazon Web Service.
Видео
Презентация
Примечания и ссылки
Plays:207 Comments:0
