Сбор влиятельных вершин — сравнительное исследование краулеров социальных сетей (Денис Айвазов, ISPRASOPEN-2019) — различия между версиями
Материал из 0x1.tv
StasFomin (обсуждение | вклад) |
StasFomin (обсуждение | вклад) |
||
;{{SpeakerInfo}}: {{Speaker|Денис Айвазов}}
<blockquote>
Online network crawling tasks require a lot of efforts for the researchers to collect the data. One of them is identification of important nodes, which has many applications starting from viral marketing to the prevention of disease spread. Various crawling algorithms has been suggested but their efficiency is not studied well. In this paper we compared six known crawlers on the task of collecting the fraction of the most influential nodes of graph.
We analyzed crawlers behavior for four measures of node influence: node degree, k-coreness, betweenness centrality, and eccentricity. The experiments confirmed that greedy methods perform the best in many settings, but the cases exist when they are very inefficient.
</blockquote>
{{VideoSection}}
{{vimeoembed|378877859|800|450}}
{{youtubelink|}}{{letscomment}}
{{SlidesSection}}
[[File:Сбор влиятельных вершин — сравнительное исследование краулеров социальных сетей (Денис Айвазов, ISPRASOPEN-2019).pdf|left|page=-|300px]]
{{----}}
[[File:{{#setmainimage:Сбор влиятельных вершин — сравнительное исследование краулеров социальных сетей (Денис Айвазов, ISPRASOPEN-2019)!.jpg}}|center|640px]]
{{LinksSection}}
<!-- * [ Talks page on site] --> |
Версия 15:43, 27 декабря 2019
- Докладчик
- Денис Айвазов
Online network crawling tasks require a lot of efforts for the researchers to collect the data. One of them is identification of important nodes, which has many applications starting from viral marketing to the prevention of disease spread. Various crawling algorithms has been suggested but their efficiency is not studied well. In this paper we compared six known crawlers on the task of collecting the fraction of the most influential nodes of graph.
We analyzed crawlers behavior for four measures of node influence: node degree, k-coreness, betweenness centrality, and eccentricity. The experiments confirmed that greedy methods perform the best in many settings, but the cases exist when they are very inefficient.
Видео
Посмотрели доклад? Понравился? Напишите комментарий! Не согласны? Тем более напишите.