Smartest Technologies Ltd.

Providing the SMART solutions

How to find more bugs? (Especially if you have no time) 11th SQA Days & ELT Ukraine April 2012

Yaron Tsubery Website: <u>www.dSmartest.com</u> Email: <u>YaronTs@dSmartest.Com</u> Mobile: +972 52 8549255

Smartest Technologies (c) 2010

Presentation objectives

The challenges that we have

Take control over the process

Summary

- Yaron Tsubery
- ✤ Homeland: Israel
- More than 19 years experience in Software Development and Testing,
- Director QA & Testing at Comverse, managed large testing groups and projects deployed to customers located in Israel, USA, Europe, and to the Fareast countries and...
- Currently, Managing Director of Smartest.
- President of ITCB (Israeli Testing Certification Board) and a formal member in ISTQB,
- President of ISTQB (International Software Testing Qualifications Board).

Presentation objectives

The challenges that we have Take control over the process

Summary


Objectives

- We will walkthrough some theoretical material and see the match between theory and reality,
- Present the challenges and their results,
- Show a way to improve your efficiency and effectiveness, through a mixed Approaches,
- The presentation is aimed at stimulating your mind and opening new views to the subject,

Set Expectations

This presentation focuses on the testing process related to the **Execution phase**,

*Let's have a **dynamic** and **interactive** session

Presentation objectives

The challenges that we have

Take control over the process

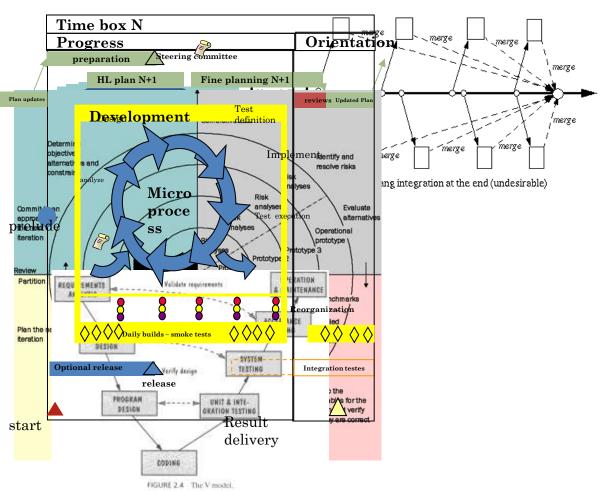
Summary

What Were The Challenges That We Had?

Challenges

- ✤ Very <u>large</u> and complex systems
- Systems that **required** to function **24/7**
- ***** Frequent requests for changes
- **Market** change and required **fast delivery**
- Continue to keep the high quality level required for our systems
- Competitors...

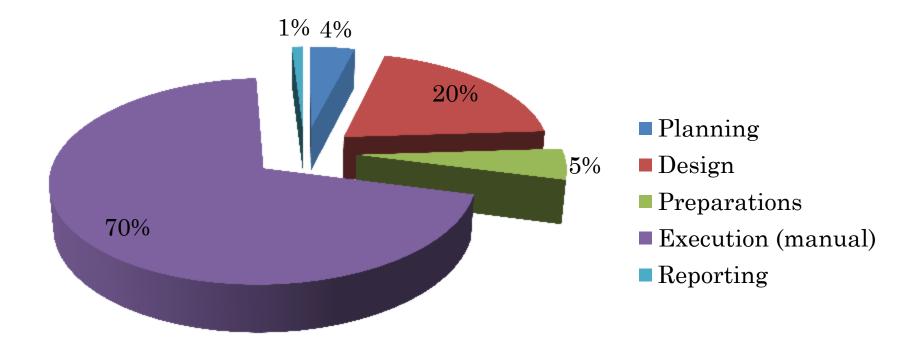
Background


Life-cycles Models (SDLCs)

Big Bang

*Water fall

* Spiral


*V-Model

Time-box and Agile development model

Smartest Technologies (c) 2010

Were Usually We Put The Efforts In The Testing Process? How much time are you investing in...?

Where Do We **Invest Most of Our Time at The Execution Stage?**

The Evolution Of Regression

Full testing execution cycles including all regression tests

Partial regression tests set including ATP Using Riskbased Testing approach

 $4 \ {\rm November} \ 2015$

Smartest Technologies (c) 2010

What Are We Looking For?

Stages That We Can Improve Defect Detection

Test Execution

Requirements

Code

Nothing New So Far... (-;

Presentation objectives

The challenges that we have

Take control over the process

Summary

So, What Did We **Do**? **How Our Strategy** & Plan Looked Like?

Strategy

- *Focused plan at the Execution Cycles
- **Use risk-based** approach
- Rapidly track and analyze the execution results
- *Manage through **defect detection** analysis.

Planning

- ✤ Main dimensions to consider at execution:
 - Concentrate on each build we're getting from the development
 - Design tests using quality risk categories analysis
 - Divide each build to 3 parts following risk-based approach, using priority (High, Medium and Low)
 - > What to cover in each part?
 - > Which **coverage level** should we have?
- How can we benefit from previous builds and cycles?
- How can we benefit from the current build?
- * ...and even from the **current part** we're testing!

Level Of Testing

- Risk analysis and priorities of the features taken from the initial plan we built
- Evaluation of level according to sanity tests results
- Dependencies between features (new & current)
- **Coverage we had in previous build:**
 - **Did** we **cover** that part?
 - **How much** and what did we cover?
 - > What were the **results** of previous tests?

➢ How many defects did we had? Their severity and priority! ₄ November 2015 Smartest Technologies (c) 2010

Level Of Testing - cont'

- Don't forget the Platform and Infrastructure areas:
 - ≻ New hardware
 - ≻ New Kernel
 - > O/S changes
 - ≻ Changes or New 3rd party parts
 - \succ Configurations
 - ≻ Etc'

- And additional parts that fits to your system
- ✤I'm sure that you have now concerns about the **duration** which these activities may take 4 November

Define what to cover per each set of priority (High, Medium and Low)

*Sanity

- New functionality
- Infrastructure & system related tests

Regressions:

- ≻ Related to new functionality
- > Bug fixes / retests
- \succ Related to bug fixes
- *ATP related tests

4 November 2015

Smartest Technologies (c) 2010

Adding The Focused Exploratory Part

Focused Exploratory Testing

After we have the plan per each set of priority test, considering all elements of coverage and level of coverage,

Add to each set of priority test – at the end – a Focused Exploratory Testing part

Let's have a look at the Gantt

Gantt Sample

			-		
	0	Task Name	Duration	Start	Finish
27		+ Test Planning	130 days	Wed 11/1/06	Sun 4/29/07
31		Test Design and preparations	75 days?	Thu 3/1/07	Sun 6/17/07
74		Test Execution	118 days?	Sun 5/27/07	Tue 11/13/07
75		TF1 (new content)	28 days?	Sun 5/27/07	Tue 7/3/07
86		□ STF 2 (new content)	27 days?	Sun 6/17/07	Mon 7/23/07
87		General test operation	27 days?	Sun 6/17/07	Mon 7/23/07
93		🖃 Single Lab - Critical areas	16 days	Tue 6/26/07	Tue 7/17/07
94		KIT/Installation tests	2 days	Tue 6/26/07	Wed 6/27/07
95	III	Sanity tests	1 day	Thu 6/28/07	Thu 6/28/07
96		CSM - progression tests	10 days	Sun 7/1/07	Thu 7/12/07
97		Retest defects	5 days	Sun 7/1/07	Thu 7/5/07
98		Regression tests	5 days	Sun 7/8/07	Thu 7/12/07
99		Analysis & Exploratory tests	3 days	Sun 7/15/07	Tue 7/17/07
100			22 days	Sun 6/17/07	Mon 7/16/07
101		Integration tests	4 days	Sun 6/17/07	Wed 6/20/07
102		E2E Flows	4 days	Sun 6/17/07	Wed 6/20/07
103		Build tests	15 days	Tue 6/26/07	Mon 7/16/07
104		🗆 Critical Areas	14 days	Tue 6/26/07	Sun 7/15/07
105	III	Sanity tests	1 day	Tue 6/26/07	Tue 6/26/07
106		E2E Flows	6 days	VVed 6/27/07	VVed 7/4/07
107		Load tests	5 days	Thu 7/5/07	Wed 7/11/07
108		Analysis & Exploratory	2 days	Thu 7/12/07	Sun 7/15/07
109		Other areas	5 days	Tue 7/10/07	Mon 7/16/07
110		HA test	3 days	Tue 7/10/07	Thu 7/12/07
111	III	Monitoring	2 days	Tue 7/10/07	VVed 7/11/07
112	III	Security and system procedures	3 days	Tue 7/10/07	Thu 7/12/07
113		Analysis & Exploratory	2 days	Sun 7/15/07	Mon 7/16/07
114		□ STF 3 (new content)	30 days?	Mon 7/23/07	Sun 9/9/07

Well...

How To Leverage The Efficiency of Exploratory **Testing**?

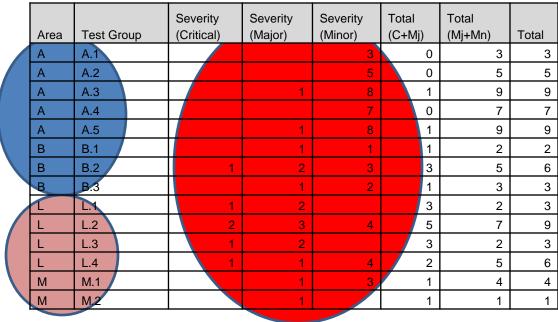
Leveraging The Exp' Testing

Perform an analysis of the defects density

- ➤ Severity
- > Priority
- Don't delay the analysis to the end of the testing cycle, perform that while you execute the test priority set!
- *After analyzing the defects density and the infected areas, chose the most infected areas and focus your exploratory testing there!

Now you're running focused exploratory testing 4 November 2015 Smartest Technologies (c) 2010

Let's Simplify The Defect Detection Analysis?


Defects Density Per Area

*****Assumptions:

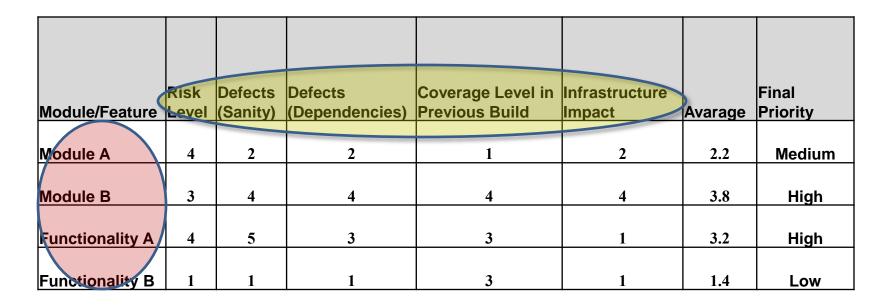
≻ We have 2 new functionality areas: A & B

≻ We have 2 areas for regressions: L & M

✤We saw the following defect density behavior

C = Critical Mj = Major Mn = Minor

Divide To Priority Sets

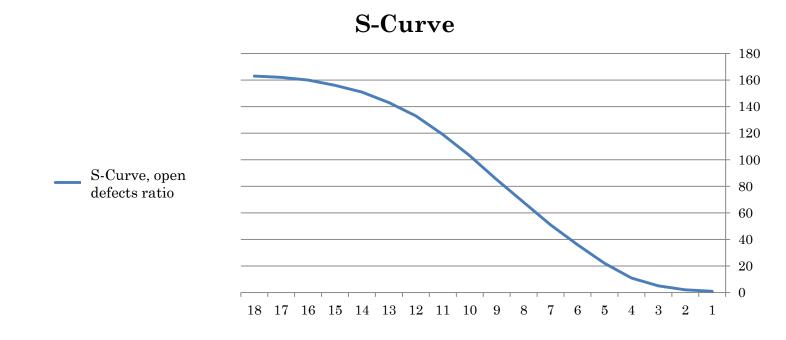

- Order the priority using the defects density table
- Create Priority Sets:
 - ≻ High
 - ≻ Medium
 - ≻ Low

Area	Test Group	Severity (Critical)	Severity (Major)	Severity (Minor)	Total (C+Mj)	Total (Mj+Mn)	Total
L	L.2	2	3	4	5	7	9
В	B.2	1	2	3	3	5	6
L	L.1	1	2		3	2	3
L	L.3	1	2		3	2	3
L	L.4	1	1	4	2	5	6
A	A.3		1	8	1	9	9
A	A.5		1	8	1	9	9
М	M.1		1	3	1	4	4
В	B.3		1	2	1	3	3
В	B.1		1	1	1	2	2
М	M.2		1		1	1	1
A	A.4			7	0	7	7
A	A.2			5	0	5	5
A	A.1			3	0	3	3

More Complex Analysis Table

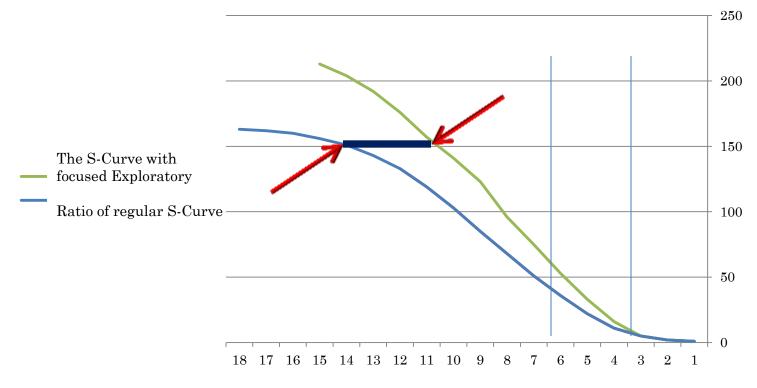
Analysis per tested module or feature

Perform deep analysis per the various tests executed


More Complex Analysis Table

- Measure the infected area depending on defects detection ratio
- Prioritize the areas to put the focus when performing Exploratory Testing

	Risk	Defects	Defects	Coverage Level in	Infrastructure		Final
Module/Feature	Level	(Sanity)	(Dependencies)	Previous Build	Impact	Avarage	Priority
Module A	4	2	2	1	2	2.2	Medium
Module B	3	4	4	4	4	3.8	High
Functionality A	4	5	3	3	1	3.2	High
Functionality B	1	1	1	3	1	1.4	Low


Defect Detection Ratio

✤Normal S-Curve

S-Curve using Focused Exploratory Testing

Where Do We See The Impact?

The Impact

- Approach method: Defects driven approach
- *****Project: delivery timeline
- **&** Quality: product's quality raised
- * Efficiency: less time invested at defect
 detection

Positioning: higher quality of the Testing Team/s – less escaped defects

 $4 \ \text{November} \ 2015$

Smartest Technologies (c) 2010

When To Expand **The Focused** Exploratory **Tests**?

When To Expand?

- At the time that we have many features to test and the probability to have defects is high
- At the time that we have less time for detailed description of the test cases
- At the time that we have many change requests that we didn't cover with test cases
- \clubsuit Recommendations:
 - Document the skeleton of the Exploratory Tests you executed
 - Describe in more details those who encountered bugs (-:

When To Reduce **Or Not Perform The Focused** Exploratory **Tests**?

When To Reduce Or Not Perform?

- At the time that we have only minor areas to cover,
- At the time that we see defect convergence - less bugs open,
- At the time that we see that there are less areas that are getting "infected",
- *At the time that the **ROI is less effective**.

Introduction

Presentation objectives

The challenges that we have

Take control over the process

Summary

Before The Summary... What are the Next **Steps**?

Next Steps

Try to Implement that in an Agile environment,

Start to use **Heuristic** methods!

Where do we find most of our bugs? (ODC analysis)

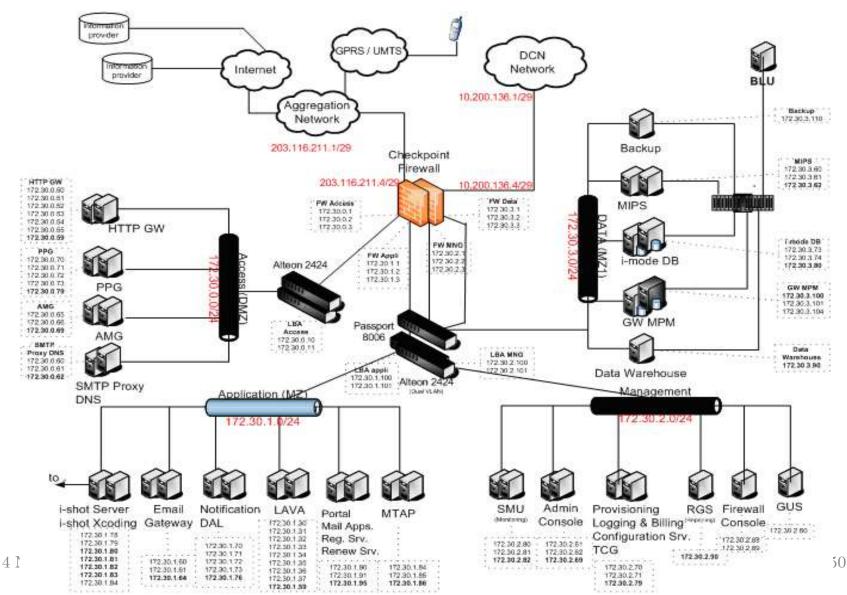
✤ How to reduce over-testing?

4 November 2015

Summary

- Analyze your testing project and decide if to activate this approach
- Feel free to Mix some Execution Approaches
- ***** Factors for **successful implementation**:
 - Initial risk analysis
 - Prioritize test areas High, Medium and Low
 - Daily defect detection analysis per area
 - > Focus on areas with more **potential** to have **defects**
 - Communicate plan and results with your peers and managers

✤Good Luck!

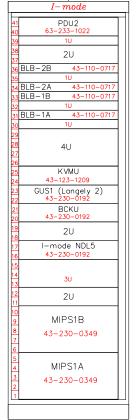


Yaron Tsubery:

yaronts@dsmartest.com

Office: +972 2 6509255

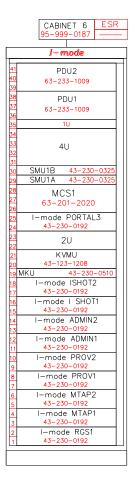
System: Physical Architecture



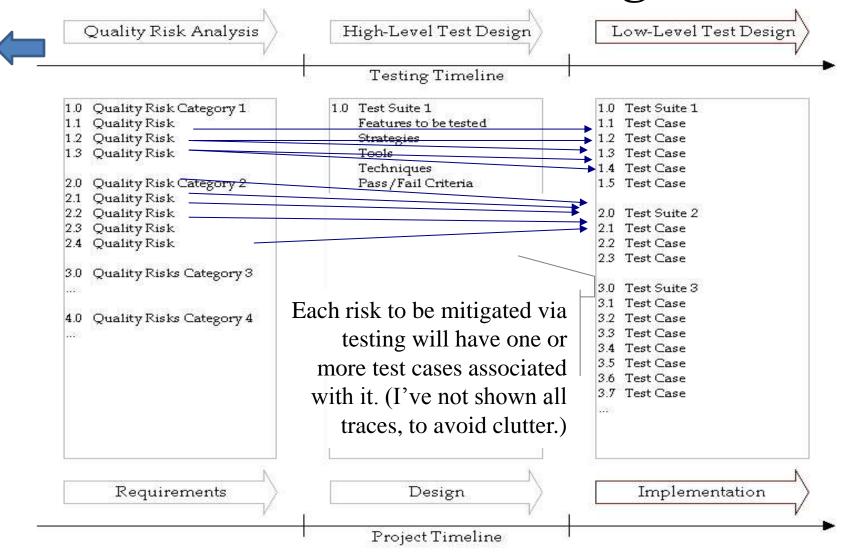
System Layout

	CABINET 2 ES 95-999-0185
	I-mode
41	PDU2
40	63-233-1022
<u>39</u>	10
<u>38</u>	711
<u>37</u>	3U
36	
20	3U
33	
32	
31	3U
30	
<u>29</u>	
<u>28</u>	3U
27	ECS 1P 47 110 072
26	FCS-1B 43-110-072 1U
23	FCS-1A 43-110-072
23	
22	30
21	
20	2U
19	20
<u>18</u>	FMS RAID1
17	43-060-0081
16	
14	FMS 1
13	43-060-0090
12	EMS 2
11	43-060-0090
<u>10</u>	
9	FMS 3
8	43-060-0090
7 6	51/2 .
5	FMS 4
4	43-060-0090
3	FMS 5
2	43-060-0090
1	+5 550-6696

CABINET 3	ESR
95-999-0180	



CABINET 4 ESR 95-999-0186		
95-999-0186	CABINET 4	ESR
	95-999-0186	


_	I– mode
41	PDU2
40	63-233-1020
39	1U
38	
37	40
<u>36</u>	
<u>35</u>	
34	
<u>33</u>	
32	
20	1
	SZ NORTEL 8006
29	
20	43-110-2015
26	
25	
24	1
23	
22	2U
21	20
20	050007 ()
19	REPORT-1A
18	43-230-0349
17	
16	
14	I-ModeDB 1B
1.3	
12	43-230-0349
11	
10	
9	BLU1
9 8 7 6	43-230-0511
7	
	10
5	L MadaDR 1A
4	I-ModeDB 1A
3	43-230-0349

CABINET 5 ESR 95-999-0187 -----

	I-mode	
и	PDU2	
0	63-233-1009	1
9		1
8	PDU1	1
7	63-233-1009	1
5	10	1
4		1
3	4U	1
2	40	
51		
0	RCU1 63-232-1032	
9	I-mode MTA2	1
8	43-230-0192	1
7	I-mode MTA1 43-230-0192	1
6		
0	I-mode NDL4 43-230-0192	
4	I-mode NDL3	1
2	43-230-0192	1
5 4 3 2 1	KVMU	
0	43-123-1208	1
9	1U	
8	I-mode NDL2	
7	43-230-0192	1
6	I-mode NDL1	
5	43-230-0192	1
0 9 8 7 6 5 4 3 2 1	I-mode EGW2 43-230-0192	1
<u>د</u>	I-mode EGW1	1
<u>∠</u> 1	43-230-0192	1
0	FWU MNG1	1
9	43-230-0192	1
3	FWU2	I
7	43-230-0192	1
5	FWU1	1
5	43-230-0192	1
4	I-mode PORTAL2	1
3	43-230-0192	1
2	I-mode PORTAL1	1
1	43-230-0192	

Low-Level Design

4 November 2015

Smartest Technologies (c) 2010

Reference: Rex Black (STE)

52

Quality risks are potential system problems which could reduc	e user satisfaction	
Risk priority number: Aggregate measure of problem risk	Tracing	١
Business (operational) risk: Impact of the problem	information back to requirements,	

Technical risk: Likelihood of the problem

nformation back to requirements, design, or other risk bases

Qualit	v Risk			Tech. Risk	Bus. Risk	Risk Pri. #	Extent of Testing	Tracing
Risk Category 1			INDIX	MBR	1 11. //	resung	intering	
Risk 1								
Risk 2								
Risk n	A hierarchy of risk categories can help organize the list and jog your memory.	1 = Very high 2 = High 3 = Medium 4 = Low 5 = Very low	techn busin from		1-5 6-10 11-1 16-2	= Exte $= Broa$ $5 = Curs$ $0 = Opp$	nd ory ortunity	
4 November 2015 Smartest Techr		nologies (c)	2010 ²¹⁻²	.5 = Repo Referenc	ort bugs e: Rex Black (53 STE)		