
1CONFIDENTIAL

Design Patterns for QA 

Automation
Anton Semenchenko



2CONFIDENTIAL

1. Main challenges

2. Solution

3. Design Patterns – the simplest definition

4. Design Patterns language – the simplest definition

5. Encapsulation – the most important OOP principle

Agenda, part 1 (general)



3CONFIDENTIAL

1. Page Element

2. Page Object

3. Action

Agenda, part 2 (main patterns)



4CONFIDENTIAL

1. Flow (Fluent Interface)

– Ubiquitous language

– Key word driven

– Behavior Driven Development (BDD)

2. Domain Specific Language (DSL)

– Flow

3. Navigator (for Web)

Agenda, part 3 (less popular patterns)



5CONFIDENTIAL

1. “Rules” and principles

2. A huge set of useful links

3. A huge set of examples

Agenda, part 4 (take away points)



6CONFIDENTIAL

1. Pure design

2. Over design

2 main challenges in our every day work (interview experience)



7CONFIDENTIAL

1. Find a balance

Solution



8CONFIDENTIAL

1. Elements (blocks) of reusable object-oriented software;

2. The re-usable form of a solution to a design problem;

Design Patterns – the simplest definition

https://en.wikipedia.org/wiki/Design_pattern


9CONFIDENTIAL

1. Design patterns that relate to a particular field (for example QA Automation) is called 

a pattern language

2. Design Patterns language gives a common terminology for discussing the situations 

specialists are faced with:

– “The elements of this language are entities called patterns”;

– “Each pattern describes a problem that occurs over and over again in our (QA Automation) 

environment”;

– “Each pattern describes the core of the solution to that problem, in such a way that you can 

use this solution a million times over, without ever doing it the same way twice!”

Design Patterns – as a language

https://en.wikipedia.org/wiki/Pattern_language


10CONFIDENTIAL

1. Design patterns that relate to a QA Automation field:

– Page Element

– Page Object

– Action

– Flow

– DSL

– Navigator (for Web)

Design Patterns for QA Automation



11CONFIDENTIAL

1. Ask yourself "how can I hide some details from the rest of the software?“

2. As with any encapsulation this yields two benefits (QA Automation, Page Object Design 

Pattern context):

– store logic that manipulates the UI to a single place you can modify it there without affecting 

other components in the system;

– it makes the client (test) code easier to understand because the logic there is about the 

intention of the test and not cluttered by UI details.

Encapsulation – the most important OOP principle



12CONFIDENTIAL

1. Page Element – encapsulates “complexity” of UI element, canonical example – table as a 

part of UI.

2. Page Element – the simplest Page Object (Page Object with one and only one UI element)

3. Let’s focus on Page Objects and then return back to Page Element Design Pattern.

Page Element



13CONFIDENTIAL

1. Page Objects – encapsulates the way of identification and logical grouping of widgets.

2. Page Object == Logical Page

3. Page Object != Physical Page

Page Object



14CONFIDENTIAL

Page Object – classical example (state-less approach)



15CONFIDENTIAL

Page Object – classical example (state-less approach) 



16CONFIDENTIAL

1. Aggregation

2. Inheritance

– Much more complicated then aggregation.

3. Summary:

– prefer aggregation to inheritance in mooooost cases;

– before start implementation based on inheritance, please, take a break for a minute, and re-

thing everything again, possibly you can find a proper solution based on aggregation.

2 ways (main, in 99% of cases) of re-usage any entity in OOP



17CONFIDENTIAL

1. Let’s compare:

– Photo

• Share – looks like parallelism (easy parallelism).

– Video

• Share – looks like parallelism (not trivial parallelism).

State-less or state-full solution?



18CONFIDENTIAL

1. How easy transform solution from “single” to “multi” threading (to decrease “QA 

Automation Windows”)

– State-less – like share a photo

• Just 5 minutes of work.

– State-full – like share a video

• Not trivial task, could be a night mare.

2. Summary

– prefer state-less solutions to state-full solutions in mooooost cases;

– before start implementation a state-full solution, please, take a break for a minute, and re-

thing everything again, possibly you can find a proper state-less solution.

State-less or state-full solution?



19CONFIDENTIAL

1. Static class

– could be implemented as a state-less solution easily

2. Object

– State-full solution in 99,99% cases

3. Summary

– prefer static class based solutions (state-less) to object based (state-full) in mooooost cases;

– before start implementation based on objects, please, take a break for a minute, and re-thing 

everything again, possibly you can find a proper solution based on static classes.

Object or static class \ State-less or state-full solution?



20CONFIDENTIAL

1. Static classes based

2. State-less

3. Summary:

– Such an implementation (the simplest one, state-less) – is a proper one in most cases;

– You can find dozens of examples in this presentation.

Page Object – the simplest implementation



21CONFIDENTIAL

1. UI Map – one entry point

– One entry point, tree of Page Objects;

– One entry point, tree of locators.

UI Map



22CONFIDENTIAL

1. Web UI that behaves like a Wizard

2. Web UI in combination with Mobile in one use case

3. Internet of Things (in most cases)

4. More then 1 page during 1 test (for example several portals or several instances of one 

portal to implement one “business use case”):

– Really seldom;

– Looks like integration tests (in most cases):

• Std solution- some type of White Box Testing.

5. Many others “special cases”

Page Objects – state-full, special cases



23CONFIDENTIAL

Page Object – special case example (state-full approach)



24CONFIDENTIAL

1. “Page objects are a classic example of encapsulation - they hide the details of the UI 

structure and widgetry from other components (the tests).”

– “store logic that manipulates the UI to a single place you can modify it there without affecting 

other layers in the QA Automation solution (architecture)”;

– “it makes the test code easier to understand because the logic there is about the intention of 

the test (focus on business logic) and not cluttered by UI details”.

Page Object by Martin Fowler



25CONFIDENTIAL

1. “When you write tests against a web page, you need to refer to elements within that web 

page in order to click links and determine what's displayed.”

2. “However, if you write tests that manipulate the HTML elements directly your tests will be 

brittle to changes in the UI.”

3. “A page object wraps an HTML page, or fragment, with an application-specific API, allowing 

you to manipulate page elements without digging around in the HTML.”

4. ”Page Object should allow a software client to do anything and see anything that a human 

can.”

5. ”Page Object should also provide an interface that's easy to program to and hides the 

underlying widgetry in the window.”

Page Object by Martin Fowler, “general” rules



26CONFIDENTIAL

Page Object by Martin Fowler



27CONFIDENTIAL

1. “The page object should encapsulate the mechanics required to find and manipulate the 

data in the UI control itself”

2. “Changing the concrete control - the page object interface shouldn't change.”

3. “A page object wraps an HTML page, or fragment, with an application-specific API, 

encapsulate a way of page elements manipulation (without digging around in the HTML).”

4. ”A page object should also provide an interface that's easy to program to and hides the 

underlying widgetry in the window.”

Page Object by Martin Fowler, “encapsulation” rule



28CONFIDENTIAL

1. “A page object wraps an HTML page, or fragment, with an application-specific API, 

allowing you to manipulate page elements without digging around in the HTML.”

2. “Despite the term "page" object, these objects shouldn't usually be built for each page, but 

rather for the significant elements on a page”

3. “A header page object and a footer page object – canonical examples.”

Page Object by Martin Fowler, “logical page” rule



29CONFIDENTIAL

1. “Model the structure in the page that makes sense to the user of the application.”

2. ”Page Object should allow a software client to do anything and see anything that a human 

can.”

3. “Some of the hierarchy of a complex UI is only there in order to structure the UI - such 

composite structures shouldn't be “showed” by the page objects.”

Page Object by Martin Fowler, “hierarchy of a complex UI” rule



30CONFIDENTIAL

1. “To access a text field you should have accessor methods that take and return a string, 

check boxes should use booleans, and buttons should be represented by action oriented 

method names.”

2. “Page object operations should return fundamental types (strings, dates) or other page 

objects.”

3. “If you navigate to another page, the initial page object should return another page object 

for the new page.”

Page Object by Martin Fowler, “should return” rule



31CONFIDENTIAL

1. “There are differences of opinion on whether page objects should include assertions 

themselves, or just provide data for test scripts to do the assertions.”

2. “Advocates of including assertions in page objects say that this helps avoid duplication of 

assertions in test scripts, makes it easier to provide better error messages, and supports a 

more TellDontAsk style API.”

3. Asserts in Page Objects increase QA Automation window dramatically.

Page Object by Martin Fowler, “assertion” rule

http://martinfowler.com/bliki/TellDontAsk.html


32CONFIDENTIAL

1. “Advocates of assertion-free page objects say that including assertions mixes the 

responsibilities of providing access to page data with assertion logic, and leads to a 

bloated page object.”

2. “I favor having no assertions in page objects.”

3. “I think you can avoid duplication by using assertion libraries (there is a huge set such a 

frameworks) for common assertions - which can also make it easier to provide good 

diagnostics.”

Page Object by Martin Fowler, “assertion” rule



33CONFIDENTIAL

1. We've described this pattern in terms of HTML, but the same pattern applies equally well to 

any UI technology. I've seen this pattern used effectively to hide the details of a Java swing 

UI and I've no doubt it's been widely used with just about every other UI framework out 

there too.

2. Patterns that aim to move logic out of UI elements (such as Presentation Model, Supervising 

Controller, and Passive View) make it less useful to test through the UI and thus reduce the 

need for page objects.

Page Object - notes

http://martinfowler.com/eaaDev/PresentationModel.html
http://martinfowler.com/eaaDev/SupervisingPresenter.html
http://martinfowler.com/eaaDev/PassiveScreen.html


34CONFIDENTIAL

1. Page objects are most commonly used in testing, but can also be used to provide a scripting 

interface on top of an application.

2. It's best to put a scripting interface underneath the UI, that's usually less complicated and 

faster.

3. However with an application that's put too much behavior into the UI then using page 

objects may make the best of a bad job. (But look to move that logic if you can, it will be 

better both for scripting and the long term health of the UI.)

Page Object – alternative areas of usage



35CONFIDENTIAL

1. Page Element – encapsulates “complexity” of UI element, canonical example – table as a 

part of UI.

2. Page Element – the simplest Page Object (Page Object with one and only one UI element)

Page Element



36CONFIDENTIAL

1. Action – a set (tiny or huge) of lines of code based on “primitive” \ “low level” API (for 

example Selenium or some wrapper) calls.

2. Action is usually used in a combination with Page Element and Page Object Design Patterns.

3. Action layer could be separated from, combined with Page Objects layer … or even both 

approached in one solution.

Action



37CONFIDENTIAL

1. 2 “types” of Actions:

– QA Automation specialist oriented;

– Business (~Product Owner) oriented;

2. Action – isn’t a right place for asserts in mooooooooost cases:

– There is no sense to check the same functionality in the same build dozens of times;

– Such an approach seriously increase QA Automation windows;

Action



38CONFIDENTIAL

1. QA Automation specialist oriented Action can contain just several lines of code, to simplify 

manipulations with Widgets.

2. Business oriented Action can be a “copy” of some test (without all asserts).

3. In general Action layer could be implemented ether as a classical API or as a DSL\Flow 

based API.

Action



39CONFIDENTIAL

1. Ubiquitous language

– Domain model

– Domain driven design (DDD)

– In fact – really-really useful, general purpose practice, part of fully implemented Agile process

2. Key word driven QA Automation

3. Behavior Driven Development (BDD) approach – as a special case of DSL based QA 

Automation solutions

Flow – Fluent Interface, “logical chain”

http://martinfowler.com/bliki/UbiquitousLanguage.html
http://martinfowler.com/eaaCatalog/domainModel.html
https://en.wikipedia.org/wiki/Domain-driven_design
https://en.wikipedia.org/wiki/Keyword-driven_testing
https://en.wikipedia.org/wiki/Behavior-driven_development
https://en.wikipedia.org/wiki/Domain-specific_language


40CONFIDENTIAL

1. Domain specific language (DSL) based QA Automation

2. Flow – as a way of implementation DSL\BDD

3. State-full solution

Flow – Fluent Interface, “logical chain”

https://en.wikipedia.org/wiki/Domain-specific_language
http://martinfowler.com/bliki/FluentInterface.html


41CONFIDENTIAL

1. Flow- fluent interface is an implementation of an object oriented API that aims to provide 

more readable code.

2. A fluent interface is normally implemented by using method cascading (concretely method 

chaining) to relay the instruction context of a subsequent call (but a fluent interface 

entails more than just method chaining).

3. Generally, the context is defined through the return value of a called method self-

referential, where the new context is “equivalent” to the last context terminated through 

the return of a void context.

Flow by wiki

https://en.wikipedia.org/wiki/Object_oriented_design
https://en.wikipedia.org/wiki/Method_cascading
https://en.wikipedia.org/wiki/Method_chaining


42CONFIDENTIAL

Flow – an abstract example

LoginPage.Instance() .Navigate()

.Login()

.Search("some entity")

.ClickImages()

.SetSize(Sizes.Large)

.SetColor(Colors.BlackWhite)

.SetTypes(Types.Clipart)

.SetPeople(People.All)

.SetDate(Dates.PastYear)

.SetLicense(Licenses.All);



43CONFIDENTIAL

1. “Building a fluent API like this leads to some unusual API habits.”

2. “One of the most obvious ones are setters that return a value.”

3. “The common convention in the curly brace world is that modifier methods are void, which 

I like because it follows the principle of CommandQuerySeparation. This convention does 

get in the way of a fluent interface, so I'm inclined to suspend the convention for this 

case.”

4. “You should choose your return type based on what you need to continue fluent action.”

5. “The key test of fluency, for us, is the Domain Specific Language quality. The more the use 

of the API has that language like flow, the more fluent it is.”

Flow by Martin Fowler

http://martinfowler.com/bliki/CommandQuerySeparation.html
http://martinfowler.com/books/dsl.html


44CONFIDENTIAL

1. DSL = Domain (ether technical or business … or both – Gherkin for specific domain) + 

Language

2. Language = Dictionary + Structure

3. Dictionary = Ubiquitous language

4. Structure = some rules how to combine words (business terms) from dictionary in a proper 

ways (based on business logic)

5. Way of implementation (one of the ways) – Flow Design Pattern

DSL – Domain Specific Language

https://github.com/cucumber/cucumber/wiki/gherkin
http://martinfowler.com/bliki/UbiquitousLanguage.html


45CONFIDENTIAL

1. The basic idea of a domain specific language (DSL) is a computer language that's targeted 

to a particular kind of problem (QA Automation or even QA Automation in exact domain), 

rather than a general purpose language that's aimed at any kind of software problem. 

Domain specific languages have been talked about, and used for almost as long as 

computing has been done.

2. DSLs are very common in computing: examples include CSS, regular expressions, make, 

rake, ant, SQL, HQL, many bits of Rails, expectations in JMock …

3. It's common to write tests using some form of DomainSpecificLanguage, such as Cucumber 

or an internal DSL. If you do this it's best to layer the testing DSL over the page objects so 

that you have a parser that translates DSL statements into calls on the page object.

DSL by Martin Fowler

http://martinfowler.com/bliki/DomainSpecificLanguage.html


46CONFIDENTIAL

1. Internal DSLs are particular ways of using a host language to give the host language the 

feel of a particular language. This approach has recently been popularized by the Ruby 

community although it's had a long heritage in other languages - in particular Lisp. Although 

it's usually easier in low-ceremony languages like that, you can do effective internal DSLs 

in more mainstream languages like Java and C#. Internal DSLs are also referred to as 

embedded DSLs or FluentInterfaces

2. External DSLs have their own custom syntax and you write a full parser to process them. 

There is a very strong tradition of doing this in the Unix community. Many XML 

configurations have ended up as external DSLs, although XML's syntax is badly suited to 

this purpose.

3. Mixed (internal with external)

4. Graphical DSLs requires a tool along the lines of a Language Workbench.

DSL types by Martin Fowler 

http://martinfowler.com/bliki/FluentInterface.html
http://martinfowler.com/articles/languageWorkbench.html


47CONFIDENTIAL

1. Navigator (for Web) – follows “DRY” and “Single source of truth” principles, encapsulates 

“complexity” of links \ transitions between web pages and store this information in one and 

only one place.

2. Usually:

– works in a combination with a “Page Object” and “Action” Design Patterns for QA Automation;

– “Action” layer implements via Flow or DSL approaches;

– state-full approach;

– applies for really big projects.

Navigator (for Web)



48CONFIDENTIAL

1. “If you have WebDriver APIs in your test methods, You're Doing It Wrong.” - Simon Stewart

2. Don't repeat yourself (DRY): “Every piece of knowledge must have a single, unambiguous, 

authoritative representation within a system” - Andy Hunt and Dave Thomas in their 

book The Pragmatic Programmer

3. “Broken windows theory”

3 “main” principles \ “rules” 

https://en.wikipedia.org/wiki/Andy_Hunt_(author)
https://en.wikipedia.org/wiki/Dave_Thomas_(author)
https://en.wikipedia.org/wiki/The_Pragmatic_Programmer
https://en.wikipedia.org/wiki/Broken_windows_theory


49CONFIDENTIAL

This is a principle that helps people 

remember that object-orientation is about 

bundling data with the functions that operate 

on that data. It reminds us that rather than 

asking an object for data and acting on that 

data, we should instead tell an object what 

to do. This encourages to move behavior into 

an object to go with the data.

“Tell-Don't-Ask” principle



50CONFIDENTIAL

1. “Test-driven development”

2. “Single responsibility principle”

3. “Single source of truth”

4. “Interface segregation principle”

5. “Occam's razor”

6. “Poka-yoke”

Useful “principles”

http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Single_responsibility_principle
https://en.wikipedia.org/wiki/Single_source_of_truth
http://en.wikipedia.org/wiki/Interface_segregation_principle
http://en.wikipedia.org/wiki/Occam's_razor
https://en.wikipedia.org/wiki/Poka-yoke


51CONFIDENTIAL

Project A



52CONFIDENTIAL

Project A



53CONFIDENTIAL

Project A



54CONFIDENTIAL

Project B



55CONFIDENTIAL

Project B



56CONFIDENTIAL

Project B



57CONFIDENTIAL

Project C



58CONFIDENTIAL

Project C



59CONFIDENTIAL

Project C



60CONFIDENTIAL

Project D



61CONFIDENTIAL

Project D



62CONFIDENTIAL

Project D



63CONFIDENTIAL

Project E



64CONFIDENTIAL

Project E



65CONFIDENTIAL

Project E



66CONFIDENTIAL

Project F



67CONFIDENTIAL

Project F



68CONFIDENTIAL

Project F



69CONFIDENTIAL

Project J



70CONFIDENTIAL

Project J



71CONFIDENTIAL

Project J



72CONFIDENTIAL

Project H



73CONFIDENTIAL

Project H



74CONFIDENTIAL

Project H



75CONFIDENTIAL

Project I



76CONFIDENTIAL

Project I



77CONFIDENTIAL

Project I



78CONFIDENTIAL

Project J



79CONFIDENTIAL

Project J



80CONFIDENTIAL

Project J


