USB attacks explained

Krzysztof Opasiak

SAMSUNGSamsung R&D Institute Poland

Agenda

What is USB about?

Plug and Play

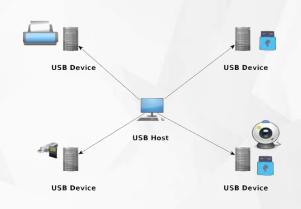
USB host attacks

USB traffic analysis + modification

USB device attacks

Summary

Q & A


What is USB about?

What is USB about?

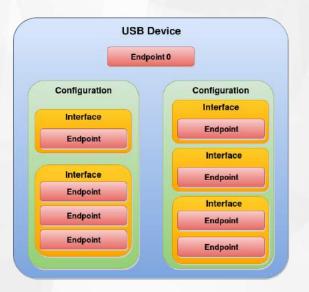
It is about providing services!

- Storage
- Printing
- Ethernet
- Camera
- Any other

What USB device is?

- Piece of hardware for USB communication
- USB protocol implementation
- Some useful protocol implementation
- Piece of hardware/software for providing desired functionality

Endpoints...

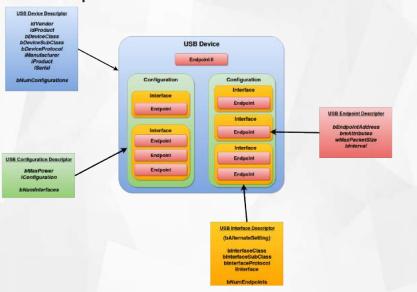

- Device may have up to 31 endpoints (incl. ep0)
- Each of them gets a unique Endpoint address
- Endpoint 0 may transfer data in both directions
- All other endpoints may transfer data only in one direction:

IN Data transfer from device to host OUT Data transfer from host to device

Control, Bulk, Interrupt, Isochronous

USB device

Plug and Play



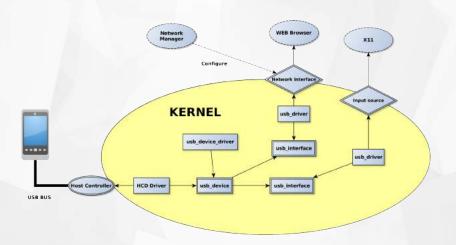
Step by step

- · Plug in device
- Detect Connection
- Set address
- Get device info
- Choose configuration
- Choose drivers for interfaces
- · Use it;)

USB descriptors

What USB driver really is?

- Piece of kernel code
- Usually provides something to userspace (network interface, tty, etc.)
- Implementation of some communication protocol



How to choose a suitable driver?

- struct usb_driver
- · When device needs special handling:
 - · Using VID, PID and interface id
 - Driver probe()s for each interface in device that match VID and PID
- When driver implements some well defined, standardized protocol
 - Using bInterfaceClass, bInterfaceSubClass etc.
 - Driver probe() for each interface which has suitable identity
 - No matter what is the VID and PID
 - Driver will not match if interface hasn't suitable class

Big picture

What's next?

- We have the driver which provides something to userspace
- · So what's next?

What's next?

- We have the driver which provides something to userspace
- So what's next?
- · It depends on interface type:
 - Network devices Network manager should handle new interface setup
 - Pendrives, disks etc automount service should mount new block device
 - Mouse, keyboard X11 will start listening for input events
 - And many many other things are going to be handled AUTOMATICALLY
 - · without any user action...

USB host attacks

AutoRun...[7]

- · autorun.inf file
- May be used to automatically run program when medium is inserted
- Now considered as a subset of AutoPlay
- GNOME also has AutoPlay-like capabilities
- Since Windows 7 disabled for USB device

```
[autorun]
open=malware.exe
icon=my_icon.ico
label=Awesome Program
```


Stuxnet[8, 7]

- Simens PLC controllers
- USB pendrives
- LNK Vulnerability (CVE-2010-2568)
- Vulnerability in icon rendering software
- · Requires user action (list folder)

USB protocol impl. attacks[1]

- USB protocol layer
- May target USB core or particular driver
- Vulnerabilities in:
 - · descriptors parsing
 - particular protocol implementation
- Popular some time ago
- Example: PSGroove
- Now quite hard to achieve (at least on recent Linux kernels)
- Thank you Johan Hovold!

USB fuzzers

- · HW:
 - · facedancer[3]

- Software:
 - umap[9]

My beautiful tablet

BadUSB attack scenario[5]

- User connects hacked device
- Device looks like pendrive, tablet...
- But sends descriptor taken from some keyboard
- And implements HID protocol
- Kernel creates new input source
- and X11 just starts using it

USB traffic analysis + modification

Keyboard MITM[4, 10]

- Simple MITM device which logs key strokes
- Usually can be found in some public spaces (libraries, schools, etc.)
- · It's nothing new, it existed also in PS/2 times

Bad USB 2.0[6]

- Both USB device and USB MITM for HID
- Hidden communication channel using set report
- Allows not only to execute the code but also get the result
- · Doesn't generate network traffic

USB device attacks

Charging stations from Poland

Source : dziennikwschodni.pl

Data stealing

- USB is universal connector used for charging
- but it's still fully functional USB!
- So it may be used to transfer files to PC
- and you never know what is inside your charger!

Difference on smartphone screen (v2.3.6)

Difference on smartphone screen (v4.4.2)

Difference on smartphone screen (v5.1)

ADB resource exhaustion[2]

- Android access for developers
- Comes disabled by default
- "Enable and forget"
- Root access to old android phone
- Bug in ADB -- no setuid() return code check

Summary

- USB is everywhere
- Host automatically serves all connected devices
- The device introduce itself using USB descriptors
- There is no relation between physical outfit and descriptors
- USB attacks are real and they are evolving
- Always check return codes!

Q & A

LVEE Linux Vacation / Eastern Europe

Thank you!

Krzysztof Opasiak

Samsung R&D Institute Poland

+48 605 125 174 k.opasiak@samsung.com

References I

[1] Darrin Barral and David Dewey. ``"Plug and Root," the USB Key to the Kingdom". In: Black Hat. Las Vegas, NV, USA, 2005. URL: https://www.blackhat.com/presentations/bh-usa-05/BH_US_05-Barrall-Dewey.pdf.

- [2] CVE-2017-5554. Jan. 2017. URL: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5554.
- [3] FaceDancer21 (USB Emulator/USB Fuzzer). URL: https://int3.cc/products/facedancer21.

References II

- [4] Hardware keyloggers discovered at public libraries. URL: https://nakedsecurity.sophos.com/2011/02/14/hardware-keyloggers-discovered-public-libraries/.
- [5] Sascha Krissler Karsten Nohl and Jakob Lell.
 "BadUSB -- On accessories that turn evil". In:

 Black Hat. Las Vegas, NV, USA, 2014. URL:

 https://srlabs.de/wp
 content/uploads/2014/07/SRLabs-BadUSBBlackHat-v1.pdf.
- [6] David Kierznowski. BadUSB 2.0: USB man in the middle attacks. Tech. rep. Royal Holloway University of London, Apr. 2016.

References III

- [7] John Larimer. "Beyond Autorun: Exploiting vulnerabilities with removable storage". In: *Black Hat 2011*. Las Vegas, NV, USA, 2011.
- [8] Liam O Murchu Nicolas Falliere and Eric Chien. W32.Stuxnet Dossier. Feb. 2011. URL: https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf.
- [9] umap: The USB host security assessment tool. URL: https://github.com/nccgroup/umap.

References IV

[10] US school expels pupils for using hardware keyloggers to change grades. Feb. 2004. URL: http://www.techworld.com/news/security/us-school-expels-pupils-for-using-hardware-keyloggers-change-grades-3500558/.

