

Application of the CABARET method for eight faces polyhedral cells in OpenFOAM framework

V.M. Goloviznin, M.A. Zaitsev, S.A. Karabasov

Application of polyhedral cells in CFD

Polyhedral cells are widely used in open-source and proprietary CFD software

https://openfoamwiki.net/index.php/Polyhedral_mesh_generation (23 June 2011)

Application of the CABARET method for eight faces polyhedral cells in OpenFOAM framework

Contents:

- Mathematical modelling of unsteady problems using the CABARET(case for linear compressible fluid)
- Development of algorithms for eight faces polyhedral cells
- Calculation results including regular and cutted hexagons

Problem solved:

- vortex flow
- unsteady backstep flow
- unsteady past cylinder flow
- unsteady jet flow of mixing two component gas
- undisturbed two vortex interaction on sphere surface
- disturbed two vortex interaction on sphere surface

Mathematical modelling of unsteady problems using the CABARET(case for linear compressible fluid)

$$\begin{aligned} \frac{\partial \rho}{\partial t} &+ \frac{\partial \rho u}{\partial x} + \frac{\partial \rho v}{\partial y} + \frac{\partial \rho w}{\partial z} = 0 \\ \frac{\partial u}{\partial t} &+ u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = -\frac{1}{\rho_0} \frac{\partial p}{\partial x} + v \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) \\ \frac{\partial v}{\partial t} &+ u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = -\frac{1}{\rho_0} \frac{\partial p}{\partial y} + v \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right) \\ \frac{\partial w}{\partial t} &+ u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} = -\frac{1}{\rho_0} \frac{\partial p}{\partial z} + v \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right) \\ \frac{\partial T}{\partial t} &+ u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z} = 0 \end{aligned}$$

 ρ - density; u, v, w velocity components; x, y, z coordinates; p - pressure.

Cell computations(Phase 1 & 3)

vol<Type>Field: p,U,T - conservative cell variables

surface<Type>Field: Ps,Us,Ts - flux face variables

->> Face Normal: mesh.Sf()

Cell B (Backward)

Phase 1-3

p=p-dt2*rss*fvc::surfaceIntegrate(mesh.Sf() & Us); T=T-dt2*fvc::surfaceIntegrate((mesh.Sf() & Us)*Ts) +dt2*fvc::laplacian(kappa, T); U=U-dt2*fvc::surfaceIntegrate((mesh.Sf() & Us)*Us +Ps*mesh.Sf()/Rofon)+dt2*fvc::laplacian(nu, U) +g*dt2*beta*(TRef-T);

thermodynamicProperties

)6							
// Reference temperature							

Invariants and space and time stencils

$$I_{+} = u - \frac{p}{\rho c}$$
$$I_{-} = u + \frac{p}{\rho c}$$

Eigen values are equal positive and negative values of wave velocity. Zero eigen value is for Y and Z velocity.

Face computations

c - invariant value, l - distance to opposite face, indices b μ f are for backward and forward face invariant value, cb μ cf are for backward and forward cell invariant value, csb μ csf are for backward and forward cell invariant value on intermediate time step.

$$I_{-}^{\max} = \max(I, I_{f}, I_{cf}) + 2(I_{csf} - I_{cf}) + c\frac{\Delta t}{l}(I_{f} - I)$$

$$I_{-}^{\min} = \min(I, I_{f}, I_{cf}) + 2(I_{csf} - I_{cf}) + c\frac{\Delta t}{l}(I_{f} - I)$$

$$I_{-}^{new} = \begin{cases} I_{-}^{\max} & 2I_{csb} - I_{b} > I_{-}^{\max} \\ 2I_{csf} - I_{f} & I_{-}^{\min} < 2I_{csb} - I_{b} < = I_{-}^{\max} \\ I_{-}^{\min} & 2I_{csb} - I_{b} < I_{-}^{\min} \end{cases}$$

New velocity values -half summ of invariants with indices "+" and "-". Pressure - half difference, multiplied by factor ρ c.

Vortex flow

Backstep flow

FE - Polygon
166563
81240
247802

	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	άά
		μų
		ή'n
		\mathbf{m}
		$\mu \mu \mu$
		mm
		\mathfrak{m}
		μų
		m
		\mathbf{m}
		\mathcal{M}
		ttt
		∞
		LLL,
~~~~~	<u>~~~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	YYY
		$\infty$
		цц,
		the second s
		$\hat{m}$
		, uu
		444
		$\dot{m}$
		μņ
		itt
		$\dot{m}$
		, uu
		the second se
		$\dot{\gamma}\dot{\gamma}\dot{\gamma}$
		$\infty$
		44



### Unsteady past cylinder flow



Zone Type: FE - Polygon Pts: 170760 Elem: 28147 Faces: 85373





#### Unsteady jet flow of mixing two component gas



time= 0



Pts: 56400

Elem: 9400

Faces: 28675

Solution Time: 0

Time Strand: 1



#### Initially undisturbed two vortex interaction on sphere surface



# Initially disturbed two vortex interaction on sphere surface



## Parallel computations and scalability

Step number	Processor number	Cell number	Cell number per processor	Performance (processor time per single step for single cell), µs	Total time, sec
14109	128	12962	102	21.69719	31.83
14109	64	12962	204	13.28509	38.13
14109	32	12962	409	8.17008	47.37
14109	16	12962	818	6.382148	72.62
14109	8	12962	1636	5.470367	125.3
14109	4	12962	818	4.699517	214.55
28395	256	57762	232	15.96	101.65
28395	128	57762	455	10.17	130.12
28395	64	57762	911	7.35	187.91
28395	32	57762	1823	6.65	341.42

Parallel computations were made on mesh up to 100 cells per processor.

## Conclusions

- 1. CABARET method realization for eight faces polyhedral cells in OpenFOAM framework have the same unique features that differentiate it from the another CFD realizations.
- 2. Time perfomance of polyhedral cells mesh is compatible with time perfomance of hexa mesh.
- 3. Parallel numerical algorithms have parallel cluster scalability.

## Thanks !