
and how to live with it

What is ServerlessWhat is Serverless
and how to live with it

Nikolay Markov, 2017

Shameless Plug

● My name is Nikolay Markov
● Senior Data Engineer at Aligned Research Group
● Used Python for 6+ years
● PyData Moscow Organizer

(http://meetup.com/PyData-Moscow/)
● Python, C++, Scala and FP are good, everything with

“java” in its title is bad, haven’t decided about Go yet

Pipelines (+ ETL’s)

● Airflow/Luigi/Jenkins
● Bash
● RabbitMQ/Apache Kafka
● SQL
● MongoDB/HBase
● ELK
● …
● PROFIT

Enough marketing words!

Let’s talk about Clouds, Big Data and Microservices instead!

Let’s get ourselves some cloud

● Move the slider - get the
resources

● Cut the cloud into pieces
(VMs)

● Now let’s have DevOps guys
to support them…

● You see where this is going,
right?

So, what is Serverless then?

● An application that significantly or fully depend on 3rd party
cloud-based applications/services to manage server-side logic and state
(Backend as a Service).

● Parts of a business logic run in stateless compute containers that are
event-triggered, ephemeral (may only last for one invocation), and fully
managed by a 3rd party (Function as a Service).

https://martinfowler.com/articles/serverless.html

Typical cases: API

● Someone or something is querying your service
● You do some background magic and return the result

Typical cases: Storage

● Object storage
● Document storage
● Analytic storage
● BI/Data Warehouse

Typical cases: Mobile/IoT

● Sending messages and notifications
● Collecting data from a network of devices
● Launch events directly on devices
● Build cross-platform apps and firmwares

Typical cases: CI/CD and Security

● Run tests
● Simulate user traffic
● Security analysis
● Build packages
● Roll out updates

Typical cases: Distributed Computing

*aaS pandemia

FaaS to rule them all

Perks and advantages

● Decrease the load on DevOps
● Pay per usage time
● Just write your business logic

Bad stuff

● Tied to a particular vendor
● May become expensive at some point
● Limited resources

More than 1 hour to get results? Perfect!

More streamy-like should do it, right?

Bash pipe

~$ sleep 3 | echo “OK”

Link to my Bash pipeline talk slides (in Russian): http://bit.ly/2tfdUCG

http://bit.ly/2tfdUCG

To stream or not to stream?

Let’s run some code!

1.

Let’s run some code!

2.

Let’s run some code!

3.

Events and triggers

● Write code and pack it
with dependencies

● Bind to certain events
● Configure security policies
● …
● Manually it’s kinda hard

You need a framework!

Chalice

Here’s how it looks

+
Serverless:
~$ sls create -t aws-python3

Apex:
~$ apex init

(+ .tf files for Hashicorp Terraform)

Here’s how it looks

{
 "name": "mycoolproject",
 "description": "My cool
project that does stuff",
 "runtime": "python3.6",
 "memory": 128,
 "timeout": 5,
 "role":
"arn:aws:iam::SECRET:role/mycool
project_lambda_function",
 "environment": {}
}

Apex:

service: aws-python3 provider:
 name: aws
 runtime: python3.6
functions:
 hello:
 handler: handler.do_stuff
 events:
 - http:
 path: items/{item_id}
 method: get

Serverless:

All you need after that is “import boto3”, write magic and
“sls deploy” or “apex deploy”

Pipeline Example: API to Kinesis to S3

1. Create API entry points and Kinesis stream
2. Create roles for our lambdas:

a. With write policy for Kinesis and log access
b. With read policy for Kinesis, log access and S3

bucket access
3. Write two lambda functions
4. Frustrate then everything fails
5. Relax
6. Think
7. Fix, redeploy - it works!
8. Aaand it’s already evening.

Pipeline Example: API to Kinesis

import boto3
import json
import logging

kns = boto3.client('kinesis')
kns_stream = 'api_test_events'
kns_partition = 'api_test_partition'
logger = logging.getLogger()

def event_handler(event, context):
 try:
 kns.put_record(
 StreamName=kns_stream,
 Data=json.dumps(event),
 PartitionKey=kns_partition
)
 return {
 "statusCode": 200,
 "headers": {"Content-Type": "application/json"},
 "body": "success"
 }
 except Exception as exc:
 err = (
 f"Failed to submit event to Kinesis "
 "(stream '{kns_stream}', partition
'{kns_partition}'): {exc}"
)
 logger.error(err)
 return {
 "statusCode": 400,
 "headers": {"Content-Type": "application/json"},
 "body": err
 }

Pipeline Example: Kinesis to S3

import base64
import datetime
import json

import boto3

s3 = boto3.client('s3')

def event_handler(event, context):
 events = []
 for rec in event['Records']:
 data = base64.b64decode(rec['kinesis']['data'])
 events.append(
 json.loads(
 json.loads(data.decode("utf-8"))["body"]
)
)

 now = datetime.datetime.utcnow()

 s3.put_object(
 Bucket="pycon-test-lambda-bucket",
 Key=(
 "{}/{}/{}/pycon_{}.json".format(
 now.year,
 now.month,
 now.day,
 now.strftime("%Y-%m-%d_%H:%M")
)
),
 Body=json.dumps(events)
)

Pipeline Example: Serverless config: Functions
service: testKinesis2S3Workflow

provider:
 name: aws
 runtime: python3.6
 region: us-west-1

functions:
 api_to_kinesis:
 role: lambdaAPI2Kinesis
 handler: api_to_kinesis.event_handler
 events:
 - http:
 path: kns/submit
 method: post
 kinesis_to_s3:
 role: lambdaKinesis2S3
 handler: kinesis_to_s3.event_handler
 events:
 - stream:
 arn: arn:aws:kinesis:us-west-1:140461132978:stream/api_test_events
 batchSize: 3
 startingPosition: LATEST
 enabled: true

Pipeline Example: Serverless config: Permissions

resources:
 Resources:
 lambdaAPI2Kinesis:
 Type: AWS::IAM::Role
 Properties:
 RoleName: lambdaAPI2Kinesis
 Path: "/"
 AssumeRolePolicyDocument:
 Version: '2012-10-17'
 Statement:
 - Effect: Allow
 Principal:
 Service:
 - lambda.amazonaws.com
 Action: sts:AssumeRole
 ManagedPolicyArns:
 - arn:aws:iam::aws:policy/AmazonKinesisFullAccess
 - arn:aws:iam::aws:policy/CloudWatchFullAccess

lambdaKinesis2S3:
 Type: AWS::IAM::Role
 Properties:
 RoleName: lambdaKinesis2S3Role
 Path: "/"
 AssumeRolePolicyDocument:
 Version: '2012-10-17'
 Statement:
 - Effect: Allow
 Principal:
 Service:
 - lambda.amazonaws.com
 Action: sts:AssumeRole
 ManagedPolicyArns:
 - arn:aws:iam::aws:policy/AmazonKinesisReadOnlyAccess
 - arn:aws:iam::aws:policy/CloudWatchFullAccess
 Policies:
 - PolicyName: PyconTestBucketAccess
 PolicyDocument:
 Version: '2012-10-17'
 Statement:
 - Effect: Allow
 Action:
 - s3:PutObject
 Resource: arn:aws:s3:::pycon-test-lambda-bucket/*

Pipeline Example: PROFIT

Pipeline Example: PROFIT

~$ curl -d'{"foo": "bar"}' -H "Content-Type: application/json"
https://9r07kwazu7.execute-api.us-west-1.amazonaws.com/dev/kns/submit

submit

{
 "dev": {
 "app_function": "app.app",
 "aws_region": "us-west-1",
 "profile_name": "default",
 "s3_bucket": "zappa-20d98oewi"
 }
}

It’s similar with microservice frameworks

Zappa:

And your cloud-based Flask/Django/WSGI app runs as
fast as “zappa deploy”

Chalice:

Basically just Flask

import pywren

def myfunc(args):
 # Do something!
 return result

pwex = pywren.default_executor()
futures = pwex.map(myfunc, args)
results = pwex.get_all_results(futures)

PyWren

http://pywren.io/

http://pywren.io/

Some gotchas
● Mind your library-dependent requirements! (install

serverless-python-requirements for Serverless)

Manually:

https://stackoverflow.com/questions/34749806/using-mo
viepy-scipy-and-numpy-in-amazon-lambda

Pre-built:

https://github.com/Miserlou/lambda-packages

● Nothing in Lambda console? Try CloudFormation!

https://stackoverflow.com/questions/34749806/using-moviepy-scipy-and-numpy-in-amazon-lambda
https://stackoverflow.com/questions/34749806/using-moviepy-scipy-and-numpy-in-amazon-lambda
https://github.com/Miserlou/lambda-packages

Some limits of AWS Lambda

● <= 512 Mb HD
● Request size <= 6Mb (if Event - 128K)
● <= 1000 concurrent executions per region
● <= 50 Mb compressed deployment package size
● <= 250 Mb uncompressed
● <= 75 Gb total packages uploaded per region
● <= 5 minutes run per request

https://docs.aws.amazon.com/lambda/latest/dg/limits.htm
l

https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://docs.aws.amazon.com/lambda/latest/dg/limits.html

AWS Lambda pricing

● First 1 million requests per month are free
● $0.20 per 1 million requests thereafter ($0.0000002 per

request)
● The Lambda free tier includes 1M free requests per

month and 400,000 GB-seconds of compute time per
month.

● API Gateway: $3.50 per million API calls received, plus
the cost of data transfer out, in gigabytes.

https://aws.amazon.com/lambda/pricing/

https://aws.amazon.com/api-gateway/pricing/

https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/api-gateway/pricing/

How to test your serverless applications

Run lambdas:

https://github.com/lambci/docker-lambda

Mock Boto:

https://github.com/spulec/moto

https://github.com/lambci/docker-lambda
https://github.com/spulec/moto

https://twitter.com/enchantner

https://fb.me/enchantner

https://twitter.com/enchantner
https://fb.me/enchantner

