# On Efficient Implementation of Discontinuous Galerkin Method for Numerical Simulation of Two-Dimensional Gas Dynamic Flows on Unstructured Meshes

V.N. Korchagova<sup>1,2</sup>, I.N. Fufaev<sup>3</sup>,

S.M. Sautkina<sup>2</sup>, I.K. Marchevsky<sup>1,2</sup>, V.V. Lukin<sup>1,2,3</sup>

<sup>1</sup>Ivannikov Institute for System Programming of the Russian Academy of Sciences <sup>2</sup>Bauman Moscow State Technical University

<sup>3</sup>*Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences* 

Moscow, Russia 23.11.2018

# Introduction

## Gas dynamics specifics

- Discontinuity of solution
- Hydro and gas dymanic instabilities (Rayleigh Taylor, Kelvin Helmholtz, *etc.*)
- Direction of disturbances propagation in subsonic and supersonic flows

#### Methods

- FDM only structured meshes & simple geometry
- FEM unstructured meshes, continuous solution, high-order
- FVM unstructured meshes, high numerical diffusivity, low-order

#### Discontinuous Galerkin method

Briefly: FEM + FVM = DG

# Governing equations

#### Euler equations

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \mathbf{v}) &= \mathbf{0}, \\ \frac{\partial \rho \mathbf{v}}{\partial t} + \operatorname{div}\left(\rho \mathbf{v} \otimes \mathbf{v} + \rho \hat{\mathcal{I}}\right) &= \mathbf{0}, \\ \frac{\partial e}{\partial t} + \operatorname{div}\left[(e+p)\mathbf{v}\right] &= \mathbf{0} \end{aligned} \right\} & \begin{aligned} \frac{\partial \mathbf{U}}{\partial t} + \operatorname{div}\mathcal{F}(\mathbf{U}) &= \mathbf{0}, \\ \mathcal{F}(\mathbf{U}) &= \operatorname{diag}\{\mathbf{F}, \mathbf{G}, \mathbf{0}\} \end{aligned} \\ \begin{aligned} \frac{\partial e}{\partial t} &= \left[\rho, \ \rho u, \ \rho v, \ \rho w, \ e\right]^{T}, \\ \mathbf{F} &= \left[\rho u, \ \rho u^{2} + p, \ \rho uv, \ \rho uw, \ (e+p)u\right]^{T}, \\ \mathbf{G} &= \left[\rho v, \ \rho vu, \ \rho v^{2} + p, \ \rho vw, \ (e+p)v\right]^{T}. \end{aligned}$$

 $\rho$  — density,  $\mathbf{v} = (u, v, w)^T$  — vector of velocity, p — pressure,  $e = \rho \varepsilon + \rho \frac{\mathbf{v}^2}{2}$  — volumetric total energy.

EoS for perfect gas:

$$p = (\gamma - 1)\rho\varepsilon, \quad \gamma > 1.$$

# Brief DG review



## Usability

- No commercial DG codes
- First open-source implementations: 2017-18, e.g. HopeFOAM

#### Advantages

- Compact stencil
- Easy to increase the accuracy order

#### Main difficulties

- Monotonization of solution in case of strong discontinuities
- Implementation complexity

# Runge-Kutta Discontinuous Galerkin method

Solution approximation on cell

$$\mathbf{U}_{h}(\vec{x}, t) = \sum_{j=1}^{N} \sum_{s=0}^{m} \mathbf{U}_{j}^{(s)}(t) \varphi_{j}^{(s)}(\vec{x})$$
$$\varphi_{j}^{(s)}(\vec{x}) \in \left\{ \left. f(\vec{x}) \colon f \right|_{I_{k}} \in P^{m}(I_{k}), \, k = \overline{1, N} \right\}$$

Spatial discretization: Discontinuous Galerkin ODE system

$$\frac{d\mathbf{U}_{j}^{(r)}(t)}{dt} - \int_{I_{j}} \mathcal{F}_{j} \nabla \varphi_{j}^{(r)} dS + \oint_{\partial I_{j}} \mathcal{F}_{j} \cdot \mathbf{n} \varphi_{j}^{(r)} dl = 0$$

Time discretization: Runge-Kutta method

$$\mathbf{U}^* = \mathbf{U}^n + \tau \mathbf{L}_h(\mathbf{U}^n)$$
$$\mathbf{U}^{n+1} = \mathbf{U}^n + \frac{1}{2}\mathbf{U}^* + \frac{1}{2}\tau \mathbf{L}_h(\mathbf{U}^*)$$

# Efficiency issue: monotonization approach

- Solutions may contain discontinuities.
- Discontinuities causes non-physical oscillations and possible blow-ups.
- Additional monotonization is required.

#### Limiters

- WENO\_S
- Barth–Jespersen (BJ)

#### Characteristic decomposition

- **()** Turn the solutions to the Riemann invariants:  $\mathbf{W}_k = \Omega_L(\theta)\mathbf{U}_k$ ,  $k \in S$ ;
- Apply the limiter to the characteristic variables;
- **③** Turn back to the conservative ones:  $\tilde{\mathbf{U}}_j = \Omega_R(\theta) \tilde{\mathbf{W}}_j$ .

# Limiters: WENO for the compact stencil

- Original idea: combination of polynomials on stencil
- Simplification: modified polynomials on neighbour cells instead of interpolation polynomials
- Highly likely not decreasing an order of accuracy on local extrema

#### WENO Simple limiter (WENO\_S)



$$\begin{split} \tilde{U}_0 &= \sum_k w_k p_k; \\ p_k &= U_k - U_k^{(0)} + U_0^{(0)}; \\ q_k^{(0)} &= \frac{1}{|I^0|} \int_{I^0} U_k(x, y) dx dy. \end{split}$$

U

# Limiters: Barth–Jespersen (BJ)

Evaluating the minimum and maximum cell means within the neighbouring cells:

$$m = \min_{k \in N} U_k^{(0)}, \quad M = \max_{k \in N} U_k^{(0)}$$

Stimating the coefficients at each limiting point:

$$y(\mathbf{x}_l) = \begin{cases} \frac{M - U^{(0)}}{U(\mathbf{x}_l) - U^{(0)}}, & U(\mathbf{x}_l) - U^{(0)} > 0, \\ \frac{m - U^{(0)}}{U(\mathbf{x}_l) - U^{(0)}}, & U(\mathbf{x}_l) - U^{(0)} < 0, \\ 1, & \text{otherwise.} \end{cases}$$

Omputing the correction coefficient:

$$\alpha = \min\{1, \min_{l} y(\mathbf{x}_{l})\}.$$

Orrect the solution:

$$U = U^{(0)} + \alpha \nabla U \cdot (\vec{x} - \vec{x}_c).$$

# Limiters comparison

Resolution check

## Cylindrical Sod problem

$$(\rho, u, v, w, p) = \begin{cases} (1, 0, 0, 0, 1), & r <= 0.4; \\ (0.125, 0, 0, 0, 0.1), & r > 0.4. \end{cases}$$



Discontinuous Galerkin Method

# Limiters comparison

#### Resolution check



Barth-Jespersen limiter

WENO\_S limiter

#### Common settings

 $t^*$  = 0.25;  $\approx \! 30000$  triangles in 2  $\times$  2 square; Co\_{max} = 0.5; Local Lax–Friedrichs numerical flux

# Limiter comparison

#### Resolution check



#### Common settings

 $t^*$  = 0.25;  $\approx 30000$  triangles in 2  $\times$  2 square; Co\_{max} = 0.5; Local Lax–Friedrichs numerical flux;

# Limiter comparison

Accuracy analysis

# Travelling wave

$$\rho = \rho_0 - a \sin(wt - k(x - 0.75y));$$
  

$$\rho_0 = 1; \quad w = k = 2\pi; \quad a = 10^{-6}.$$



# Limiter comparison

Accuracy analysis

| Approximation errors without any limiter and the BJ limiter |                             |                                             |                                |                                                     |                                |                                                     |  |
|-------------------------------------------------------------|-----------------------------|---------------------------------------------|--------------------------------|-----------------------------------------------------|--------------------------------|-----------------------------------------------------|--|
| n                                                           | $\ \Delta_i\ _C \cdot 10^6$ | $\frac{\ \Delta_i\ _C}{\ \Delta_{i-1}\ _C}$ | $\ \Delta_i\ _{L_1}\cdot 10^6$ | $\frac{\ \Delta_i\ _{L_1}}{\ \Delta_{i-1}\ _{L_1}}$ | $\ \Delta_i\ _{L_2}\cdot 10^6$ | $\frac{\ \Delta_i\ _{L_2}}{\ \Delta_{i-1}\ _{L_2}}$ |  |
| 12                                                          | 0,32926                     | -                                           | 0,16212                        | _                                                   | 0,11369                        | -                                                   |  |
| 24                                                          | 0,08589                     | 3,83349                                     | 0,04112                        | 3,94311                                             | 0,02912                        | 3,90363                                             |  |
| 48                                                          | 0,02172                     | 3,95441                                     | 0,01031                        | 3,98750                                             | 0,00736                        | 3,97569                                             |  |
| 96                                                          | 0,00563                     | 3,85545                                     | 0,00259                        | 3,96659                                             | 0,00184                        | 3,97433                                             |  |

#### . . .

Approximation errors with the WENO S limiter

| n  | $\ \Delta_i\ _C \cdot 10^6$ | $\frac{\ \Delta_i\ _C}{\ \Delta_{i-1}\ _C}$ | $\ \Delta_i\ _{L_1}\cdot 10^6$ | $\frac{\ \Delta_i\ _{L_1}}{\ \Delta_{i-1}\ _{L_1}}$ | $\ \Delta_i\ _{L_2}\cdot 10^6$ | $\frac{\ \Delta_i\ _{L_2}}{\ \Delta_{i-1}\ _{L_2}}$ |
|----|-----------------------------|---------------------------------------------|--------------------------------|-----------------------------------------------------|--------------------------------|-----------------------------------------------------|
| 12 | 0,32988                     | _                                           | 0,16227                        | -                                                   | 0,11365                        | -                                                   |
| 24 | 0,08610                     | 3,83121                                     | 0,04113                        | 3,94528                                             | 0,02912                        | 3,90286                                             |
| 48 | 0,02176                     | 3,95696                                     | 0,01031                        | 3,98839                                             | 0,00735                        | 3,97541                                             |
| 96 | 0,00584                     | 3,72300                                     | 0,00265                        | 3,89019                                             | 0,00187                        | 3,91765                                             |

# Efficiency issue: time integration

Runge-Kutta method of 3nd order

$$U^{*} = U^{n} + \tau L_{h}(U^{n});$$
  

$$U^{**} = \frac{3}{4}U^{n} + \frac{1}{4}U^{*} + \frac{1}{4}\tau L_{h}(U^{*});$$
  

$$J^{n+1} = \frac{1}{3}U^{n} + \frac{2}{3}U^{**} + \frac{2}{3}\tau L_{h}(U^{**}).$$

Adams methods of 2nd and 3rd order

$$\mathbf{U}^{n+1} = \mathbf{U}^n + \tau \left( \frac{3}{2} \mathbf{L}_h \left( \mathbf{U}^n \right) - \frac{1}{2} \mathbf{L}_h \left( \mathbf{U}^{n-1} \right) \right);$$
  
$$\mathbf{U}^{n+1} = \mathbf{U}^n + \tau \left( \frac{23}{12} \mathbf{L}_h \left( \mathbf{U}^n \right) - \frac{4}{3} \mathbf{L}_h \left( \mathbf{U}^{n-1} \right) + \frac{5}{12} \mathbf{L}_h \left( \mathbf{U}^{n-2} \right) \right).$$

# Efficiency issue: time integration

Cylindrical Sod problem

#### Common settings

 $t_{end}$  = 1.0;  $\approx 30000$  triangles in 2  $\times$  2 square; Co\_{max} = 0.5; Local Lax–Friedrichs numerical flux; WENO\_S limiter

|         | $\overline{t_{	au}}, s$ | $CFL_{max}$ | $T_{total}, \ CFL=0.15$ | $T_{total}, \ CFL = CFL_{max}$ |
|---------|-------------------------|-------------|-------------------------|--------------------------------|
| RK-2    | 0,096                   | 0.5         | 550                     | 164                            |
| Adams-2 | 0,049                   | 0.25        | 267                     | 133                            |
| RK-3    | 0,142                   | 0.5         | 724                     | 229                            |
| Adams-3 | 0,052                   | 0.15        | 273                     | 273                            |

#### Large mesh testing Double Mach reflection





## Thank you for your attention!

Discontinuous Galerkin Method