

От основ к созданию роботов. Робототехника в школе

Воронин И.В. (ИПЛИТ РАН) Воронина В.В.

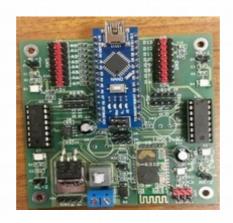
От успешных стартапов – к технологическому процветанию страны.

Воронка задействованных в научнотехническом творчестве школьников

Параметр	Число охваченных людей
Число школьников занятых техническим творчеством	500 000
Число школьников планирующих поступать в технический ВУЗ	200 000
Число абитурьентов поступивши в технический ВУЗ	50 000
Число студентов, котрые выберут обучение по профилю будущего стартапа	10 000
Число студентов запустивших свой стартап	2 000
Всего число людей работающих в стартапах	300
Успешный стартап Хотя бы 2 или 3 команды	24

Пути решения

Инженерную подготовку школьников следует начинать в раннем возрасте




Ожидаемые результаты

Преемственность при занятиях робототехникой от дошкольного образования до поступления в ВУЗ.

- Интерес к техническим наукам и развитие интеллектуального потенциала ребенка;
- Занятия программированием и научным творчеством;
- Подготовка к ЕГЭ и поступлению в высшие учебные заведения.

Учебное пособие «Программирование для детей. От основ к созданию роботов»

Цель книги: дать возможность наибольшему количеству ребят попробовать себя в техническом творчестве.

Учебное пособие «Программирование для детей. От основ к созданию роботов»

Базовые основы, описанные в книге помогут юному читателю самостоятельно создать свой самый первый проект, который в будущем сможет оказаться базой для собственного стартапа.

Структура книги

Книга разделена на девятнадцать эпизодов.

Каждый эпизод (по аналогии со Звездными войнами) — отдельная тема для самостоятельного изучения или может быть использован в качестве руководства при проведении занятий с детьми.

В конце каждого эпизода приводятся тщательно подобранные к темам теоретические и практические задания.

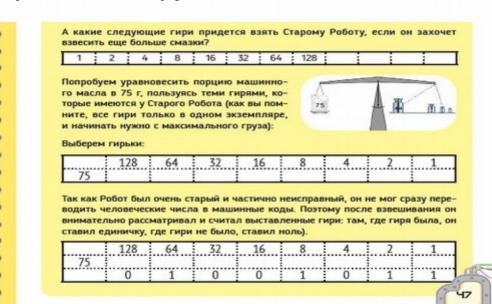
По шагам от самых простых, базовых понятий читатель постепенно подходит к пониманию основ робототехники

6.2. ПЕРЕВОДЧИКИ С ПЛАНЕТЫ ШЕЛЕЗЯКА. ПЕРЕВОД ДЕСЯТИЧНЫХ ЧИСЕЛ В ДВОИЧНУЮ СИСТЕМУ

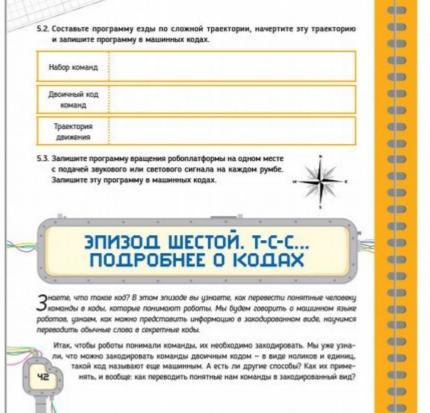
Итак, роботы (а следовательно, и компьютеры) понимают только собственный язык язык машинных кодов. Наиболее удобным оказалось двоичное кодирование: то есть в системе счисления, используемой для управления роботом, всего две цифры — 0 и 1. Но с их помощью можно записать любое, даже самое большое число, так же, как мы это обычно делаем с помощью всего десяти цифр. Но выглядят числа в двоичной системе счисления по-другому: они состоят из одних уплей и единиц и отличаются от десятичных числа количеством разрядов (то есть цифр в числе).

Как же соотнести понятные нам числа в десятичной системе с числами, которые понимают роботы? Скачала проанализучем, как же строятся привычные нам числа. Например, если у нас есть десятичное число 523, его можно представить так:

> 523 = 500 + 20 + 3 = 5 × 100 + 20 × 10 + 3 × 1 = 5 × 10² + 3 × 10³ + 3 × 10⁶


То есть мы представили заданное число в виде суммы произведений его цифр на основание в степени, которая соответствует месту цифры в числе. Такая система счисления называется позиционной — «вес» цифры в числе определяется ее местом, «позицией» в этом числе

Теперь перенесемся на фантастическую планету, где живут роботы. ____


Основы теории информатики и робототехники:

например, знакомство с различными системами счисления, представлено в увлекательной форме — показано, как закодировать сложные данные наборами ноликов и единичек, как с помощью двоичных кодов можно управлять игрушечной машинкой.

Темы, связанные с кодированием информации разбираются на конкретных примерах, в которых с помощью мобильных приложений предлагается научиться читать и создавать собственные QR-коды и штрих-коды.

6.). КАКИЕ БЫВАЮТ КОДЫ

Люди разговаривают на человеческом языке - русском, английском, немецком...

они действуют согласно своей внутренней

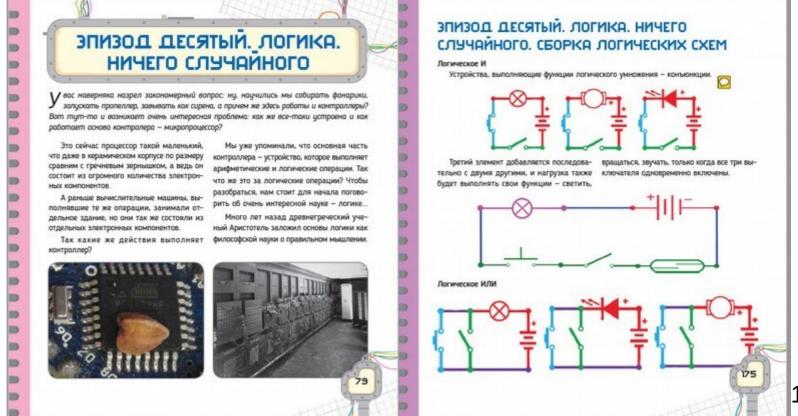
Представить же в заходированном виде можно любую информацию. Наверняка на запакованных товарах - штрихход, Считывая информацию специальным сканером, тер цену товара, его наименование и много других сведений. Информация заходирова- для чтения QR-кодов. на в виде полосок различной толщины, расположенных в ряд:

Двумерные штрихкоды более сложны и для кодирования, и для распознавания, так как информация в них зашифрована как по

вертикали, так и по горизонтали. В то же время места они занимают значительно меньше. Прочитать их можно и без специального оборудования - например, используя камеру телефона. QR-код - это один из вариантов двухмерного штрихкода.

Одно из основных преимуществ QR-кодов простота распознавания зашифрованной в них информации. Практически любое современвы обращали внимание на черные полоски ное устройство способно выполнить роль дешифратора, а значит, такие коды можно использовать буквально повсюду. Чтобы напродавец узнает и отправляет в компью- учиться читать секретную информацию, достаточно скачать специальную программу

> Попробуйте установить на свой смартфон такую программу (например, бесплатный QR Scanner) и расшифруйте информацию, зашифрованную в следующих QR-кодах.



Базовые понятия логики, такие как, дизъюнкция, конъюнкция, инверсия рассматриваются не только в теоретическом плане, но и разбирается возможность практического построения действующих моделей из электронных компонентов детского конструктора.

11

Материалы второй части книги содержат уже более усложненный материал, по сравнению с первой, базовой частью: в частности, происходит первое знакомство с программированием контроллеров на базе Arduino, и программирование датчиков к ним.

ЭПИЗОД ПЯТНАДЦАТЫЙ. СЛАВНАЯ МАШИНА— ARDUINO

В предыдущих эпизодах мы познакомились с электронными устройствами, такими ках светодиоды, транзисторы и т. д., получили представление о программировании, научились отправлять команды некоторым контраллерам. Далее мы более подробно познакомимся с контраллерами семейства Arduino. При помощи электронного конструктора вы сами будете подключать различные компоненты к контраллеру (кнопки, датники и т. д.) и составлять для управления ими программы на языке программирования

В качестве контроллера мы будем использовать платформу Arduino Nano, которая состоит из двух основных частей - аппаратного обеспечения (непосредственно платы Arduino) и программного обеспечения, которое запускается на компьютере.

Основная деталь платы - это микроконтроллер. В него будут записываться программные коды-скетчи¹, которые мы с вами станем разрабатывать и анализировать.

Злектрическое питание на плату может подаваться от компьютера через USB-порт, от сети через специальный адаптер или же от отдельного источника питания – батарейки или аккумулятора. Главное при подключении – не перепутать плюс с минусом и знать, что подключаемый источник должен давать напряжение от 3 до 12 В, максимум - 24 В. Плата сама выберет источник питания: на-

1 Sketch (онгл.) – эских. Скетнами называются прогодины dns Arduino.

пример, если она подключена к компьютеру через USB-кабель, а к разъему питания подключен адаптер, то плата выберет адаптер.

Программное обеспечение представляет собой интегрированную среду Arduino IDE. Ее можно бесплатно скачать на официаль-HOM caste https://www.Arduino.cc/en/Main/ Donate и после несложной настройки2 приступать к работе.

² Как настроить программную среду Arduino IDE для работы с платой, имеющейся в вашем роспоряжении, подробно описано в разделе

ЗПИЗОД ШЕСТНАДЦАТЫЙ. огоньки и кнопочки -**CTPOUM C ARDUINO**

этом эпизоде мы разберем ряд базовых примеров, на основе которых будет строить-О ся управление роботами в следующих эпизодах. Начиная с имитации елочной гирлянды и заканчивая управлением мотгорами и датчиками расстояния, мы будем собирать прикальные конструкции и всячески менять программный код, добиваясь интересных

В прошлом эпизоде мы познакомилось тересные модели. В этом эпизоде мы разс простейшими конструкциями, реализованными на базе контроллера Arduino NANO. Теперь давайте попробуем создать более ин-

берем ряд базовых примеров, на основе которых будет строиться наша дальнейшая

16.1. ЕЛОЧКА, ГОРИ!

Итак, мы научились управлять одним светодиодом, но что, если усложнить эксперимент, добавив несколько светодиодов другого цвета? Получится прекрасный новогод-

Давайте создадим линейку светодиодов, моргающих слева направо и справа налево, и используем на этот раз не один, а восемь светодиодов

Кстати, вопрос: сколько миллисекунд нужно поставить в скетче, чтобы задержка была равна одной секунде⁴?

> Конечно же, вы отлично зноете, что пристовка милли- авмочает тысячнию часть, и следователь но, в одной секунде тысяча миллисекунд.

В этой части книги изучаются базовые функции ввода-вывода данных, разбираются отличия между аналоговым или цифровым портами, происходит знакомство с разнообразными протоколами беспроводной связи, подробно описывается разнообразие понятия «драйвер» и его необходимость при управлении моторами.

И еще многое-много другое.

рами» называли когда-то самых отчаянных капитанов чайных клиперов³. Драйверы и в ураганный ветер не спускали парусов и не брали рифов, а когда мачты уже готовы были улегеть к чертовой матери, стреляли в парус из пистолета. Дырочку от пули ураганный ветер за десятые доли секунды превращал в огромные дыры, и парус обвисал похмотъвни А мачты оставались на местах.

Драйвер — устройство для приведения каких-либо сигналов к определенным параметрам. В узком смысле: источник высоких напряжений мил токов, управляемый малым напряжением или током; такой драйвер применяется для управления электромотором (драйвер мотора), крупной светодиодной сборкой (драйвер светодиода) и т. д.

В юните писателя Виктора Конецкого «Вчерашние заботы» рассказывается: «драйве-

У англичан слово «драйвер» тоже имеет много значений: от «гонщик» и «преследователь» до «надсмотрщик за рабами».

 Быстроходные торговые судна 19 века, предназначенные для поставки чае (помень пед.)

18.1. ЧТО ТАКОЕ ШИМ И ЗАЧЕМ ОН НУЖЕН В РОБОТОТЕХНИКЕ

Вы, конечно, знаете, что нужно для того, чтобы автомобиль изменил скорость, налример, поехал бы быстрее: водитель должен нажать педаль газа. При этом в двигатель станет поступать больше топлива, мотор взревет и начнет бешено крутить колеса.

Наши роботы работают без водителей, и «топливом» для их моторов служит электричество, поэтому, чтобы управлять окоростью робота, нам нужно уметь легко изменять окорость вращения электродвигателей колес. Причем у робота может быть не один-два, а, непример, целью шесть моторов, и крутиться они должны в разные стороны и каждый со своей окоростью. Мы же не можем на каждый мотор поставить по человеку, который высчитывал бы, с какой силой нажать на педаль газа.

Так, например, летающий робот — коптер — может иметь три, четыре или даже шесть пропеллеров, каждый из которых насажен на вал собственного электромотора и вращается с такой скоростью, что лопасти выглядят разнытным диском.

Оператор, управляющий коптером, просто нажимает рычажок на пульте — вверх или вправо, и летающий робот послушно движется в указанном направлении. При

этом человек совершено не задумывается, с какой скоростью и в каком направлении должны вращаться

винты устройства: за него эти рутинные вычисления проводит бортовой контроллер.

Так как же регулируют скорость вращения электромоторов?

Как известно в электронике существуют три базовых понятия: напряжение, сила тока и сопротивление. Все эти гри параметра связаны между собой законом Ома: увеличение сопротивления цепи уменьшает силу тока при постоянном напряжении, увеличение напряжения при постоянном сопротивле-

I=V/R V=IR R=V/I

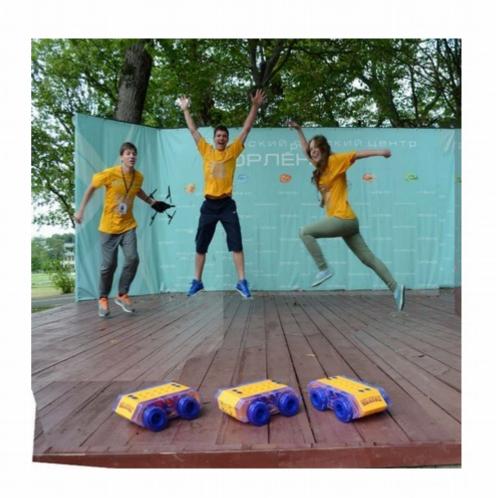
Подводим итог

Эти знания помогут ребятам подготовиться и достойно выступить на соревнованиях и хакатонах по робототехнике, а также принять участие и различных научно-технических мероприятиях.

Оборудование

Используемое в обсуждаемом учебном пособии оборудование, построено на базе AVR микропроцессоров ATmega – контроллеров Xbee, Arduino с наборами датчиков и электронными компонентами позволяющими создавать программируемые модели роботов.

Книга «Программирование для детей. От основ к созданию роботов», как и весь учебно-методический комплект «УМКИ» базируется на программном обеспечении под лицензией GNU, которое совершенно свободно и бесплатно можно установить на компьютер, смартфон, передать друзьям, ученикам и коллегам по работе. Пакеты программного обеспечения входят в репозиторий basealt linux P8..


Ресурсы в сети

- http://umki-kit.ru/ (Программы, методики, описание)
- http://umki-dist.ru/ (Образовательные ресурсы)
- http://robotobum.ru/ (Дополнительное образованиею Лагерь отдыха)
- http://www.umkikit.ru/ (Оборудование)
- https://www.youtube.com (Igor Voronin umki)

Контакты

- Игорь Воронин
- woronin05@yandex.ru
- +7 916 673 1049 (whatsapp, viber, telegram)
- https://www.facebook.com/ igor.voronin.75

