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Second Quantum Revolution is Coming
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First quantum revolution:
Collective quantum phenomena 

Lasers Transistors

$3 Trillion Industry

Second quantum revolution:
Individual quantum systems

Single atoms, ions, electrons

$10 Trillion Industry?

$100 Trillion Industry?
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Simple Quantum Technology:  
Quantum Random Number Generator

• First-principles calculations (Monte-Carlo).
• Information security and cryptography.
• E-commerce.
• Lotteries and online casinos.
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From Superposition to Quantum Information
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From Superposition to Quantum Information

Impossible to simulate using supercomputers!  
Idea for a next generation of computers!

( |0ñ+|1ñ )n

n=50: supercomputer

n=300: more states than 
atoms in the Universe



Simulation of quantum computers using classical ones

||Matthias Troyer

Simulating quantum computers on classical computers

Simulating a quantum gate acting on N qubits needs O(2N) memory and operations  

16

Qubits Memory Time for one gate operation
10 16 kByte microseconds on a watch
20 16 MByte milliseconds on smartphone
30 16 GByte seconds on laptop
40 16 TByte minutes on supercomputer
50 16 PByte hours on top supercomputer
60 16 EByte long long time
80 size of visible universe age of the universe

Source: Presentation by M. Troyer



Quantum Volume

Добавлено кубит: 100
Уменьшен коэфф. ошибок: 0
Увеличен квантовый объем: 00

Рост числа кубит не улучшает 
квантовый компьютер, если 
вероятности ошибок высока
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samples. If we make an average-case hardness assumption and prove one 
more technical assumption known as anticoncentration, we can rule 
out additive-error simulations—that is, those satisfying inequality (2). 
Anticoncentration means that the distribution q(z) is reasonably close to 
uniform. It is known to hold for random circuits of sufficient depth20 and 
for IQP18 and is conjectured to hold for boson sampling9.

One disadvantage of average-case assumptions is that they cannot easily 
be reduced to each other. By contrast, if a problem is NP-hard in the worst 
case then we know that an algorithm that works for all inputs would yield 
algorithms for thousands of other problems in NP, which collectively 
have been studied for decades by researchers across all of science and  
engineering. But for average-case hardness, we may have different hardness  
for each distribution of instances. For example, for 3-SAT a natural distri-
bution is to choose n variables and αn random clauses. It is believed that 
random instances are likely to be satisfiable for α < αc and unsatisfiable 
for α > αc, for some critical value αc ≈ 4.2667 (ref. 16). Based on this, it is 
reasonable to conjecture that choosing α = αc yields a hard distribution, 
but this conjecture is far flimsier than the worst-case conjectures even for 
this relatively well-studied problem.

In rare cases, a problem will have the same average-case and worst-
case complexity, and it is a major open question to establish quantum 
supremacy based on such a problem. Boson sampling takes steps in that 
direction9, by using a conjecture about the average-case complexity of 
estimating a linear-algebraic function known as the permanent, while 

an average-to-worst-case reduction is known only for the exact case. 
Indeed the known reduction is based on polynomial interpolation and 
its numerical instability means that new ideas will be needed to argue 
that estimating the permanent is hard on average. More generally, a major 
open problem is to base the hardness of approximate classical simulations 
of the form of inequality (2) merely on well-believed classical complexity 
assumptions, such as non-collapse of the polynomial hierarchy.

Maximal assumptions
Another reasonable possibility is to make our complexity assumptions 
as strong as possible without contradicting known algorithms. Here the 
high-level strategy is to try to improve our (often exponential-time) clas-
sical simulations as far as possible and then to conjecture that they are 
essentially optimal. Aaronson and Chen20 have recently carried out this 
programme. Among other contributions, they developed classical simu-
lations for n-qubit, depth-d circuits that calculate matrix elements in time 
O((2d)n) and nearly linear space (note that with 2n space, O(d2n) time is 
possible). An easier task than classical simulation is to distinguish likely 
from unlikely outcomes of a quantum circuit with some exponentially 
small advantage over random guessing. The ‘QUATH’ conjecture20 asserts 
that poly-time classical algorithms cannot perform this task for quan-
tum circuits whose depth d ≥ n. The advantage of this approach is that it 
enables a ‘semi-efficient’ verification procedure which uses the quantum 
device only a polynomial number of times but still requires exponential 
time on a classical computer.

Making these conjectures as strong as possible makes our confidence 
in them as low as possible; essentially any non-trivial improvement in 
simulating quantum mechanics would refute them. But so what? Unlike 
the case of cryptographic assumptions, a too-strong conjecture would not 
create any vulnerability to hackers. In this view, hardness conjectures are 
just ways of guessing the complexity of simulating quantum systems, and 
these estimates are always subject to revision as new evidence (in the form 
of algorithms) appears. Further, these conjectures highlight the limits of 
our current simulation algorithms, so that refuting them would be both 
plausible and a substantial advance in our current knowledge.

Physical noise and simulation errors
Any realistic quantum experiment will be affected by noise, that is, unde-
sired interactions with the environment. Dealing with this noise is a 
major challenge for both theorists and experimentalists. The general 
theory of quantum fault-tolerance21,22 allows quantum computations to 
be protected against a sufficiently small amount of physically reasonable 
noise. However, although the asymptotic overhead of fault-tolerance is 
relatively minor, the constant factors involved are daunting: to produce 
a fault-tolerant logical qubit may require 103−104 physical qubits23, an 
overhead far too great for short-term quantum-supremacy experiments. 
As excessive noise can render a hard probability distribution easy to 
simulate, it is an important question to determine to what extent these 
experiments remain hard to simulate classically, even in the presence of 
uncorrected noise.

A related issue is that classical simulation algorithms of quantum cir-
cuits will have errors of their own. This could be seen as analogous to 
the fact that realistic quantum computers only implement ideal quantum 
circuits imperfectly. Classical noise could be multiplicative as in inequality 
(1) or additive as in inequality (2). Methods based on representing the 
exact state24 can achieve low enough error rates that we can think of them 
as low multiplicative error, while methods based on sampling (see, for 
example, ref. 25) naturally achieve low additive error. For multiplicative 
noise it is relatively easy to show hardness results. IQP circuits remain 
hard to simulate under this notion of noise11, and similar results have 
since been shown for the one clean qubit model26 and other restricted 
classes of circuits. However, additive noise is arguably a more natural 
model, and ruling out such simulations would be a stronger result.

Addressing this question was one of the major steps forward taken by 
Aaronson and Arkhipov9 in their work on boson sampling. Based on 
two reasonable (yet currently unproven) conjectures, they argued that 

BOX 2
Random quantum circuits
Unlike boson sampling, some quantum-supremacy proposals remain 
within the standard quantum circuit model. In the model of commuting 
quantum circuits10 known as IQP (instantaneous quantum polynomial-
time), one considers circuits made up of gates that all commute, and 
in particular are all diagonal in the X basis; see Box 2 Figure below. 
Although these diagonal gates may act on the same qubit many times, 
as they all commute, in principle they could be applied simultaneously. 
The computational task is to sample from the distribution on 
measurement outcomes for a random circuit of this form, given a !xed 
input state. Such circuits are both potentially easier to implement than 
general quantum circuits and have appealing theoretical properties that 
make them simpler to analyse11,18. However, this very simplicity may 
make them easier to simulate classically too. Of course, one need not 
be restricted to commuting circuits to demonstrate supremacy. The 
quantum-AI group at Google has recently suggested an experiment 
based on superconducting qubits and non-commuting gates12. The 
proposal is to sample from the output distributions of random quantum 
circuits, of depth around 25, on a system of around 49 qubits arranged 
in a 2D square lattice structure (see Fig. 1). It has been suggested12 
that this should be hard to simulate, based on (a) the absence of any 
known simulation requiring less than a petabyte of storage, (b) IQP-style 
theoretical arguments18 suggesting that larger versions of this system 
should be asymptotically hard to simulate, and (c) numerical evidence12 
that such circuits have properties that we would expect in hard-to-
simulate distributions. If this experiment were successful, it would  
come very close to being out of reach of current classical simulation  
(or validation, for that matter) using current hardware and algorithms.

Box 2 Figure | Example of an IQP circuit. Between two columns of 
Hadamard gates (H) is a collection of diagonal gates (T and controlled-√Z).  
Although these diagonal gates may act on the same qubit many times 
they all commute, so in principle could be applied simultaneously.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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quantum processor time is only about 30 seconds. The bitstring samples 
from all circuits have been archived online (see ‘Data availability’ section) 
to encourage development and testing of more advanced verification 
algorithms.

One may wonder to what extent algorithmic innovation can enhance 
classical simulations. Our assumption, based on insights from complex-
ity theory11–13, is that the cost of this algorithmic task is exponential in 
circuit size. Indeed, simulation methods have improved steadily over the 
past few years42–50. We expect that lower simulation costs than reported 
here will eventually be achieved, but we also expect that they will be 
consistently outpaced by hardware improvements on larger quantum 
processors.

Verifying the digital error model
A key assumption underlying the theory of quantum error correction 
is that quantum state errors may be considered digitized and local-
ized38,51. Under such a digital model, all errors in the evolving quantum 
state may be characterized by a set of localized Pauli errors (bit-flips or 
phase-flips) interspersed into the circuit. Since continuous amplitudes 
are fundamental to quantum mechanics, it needs to be tested whether 
errors in a quantum system could be treated as discrete and probabil-
istic. Indeed, our experimental observations support the validity of 
this model for our processor. Our system fidelity is well predicted by a 
simple model in which the individually characterized fidelities of each 
gate are multiplied together (Fig. 4).

To be successfully described by a digitized error model, a system 
should be low in correlated errors. We achieve this in our experiment by 

choosing circuits that randomize and decorrelate errors, by optimizing 
control to minimize systematic errors and leakage, and by designing 
gates that operate much faster than correlated noise sources, such as 
1/f flux noise37. Demonstrating a predictive uncorrelated error model 
up to a Hilbert space of size 253 shows that we can build a system where 
quantum resources, such as entanglement, are not prohibitively fragile.

The future
Quantum processors based on superconducting qubits can now perform 
computations in a Hilbert space of dimension 253 ≈ 9 × 1015, beyond the 
reach of the fastest classical supercomputers available today. To our 
knowledge, this experiment marks the first computation that can be 
performed only on a quantum processor. Quantum processors have 
thus reached the regime of quantum supremacy. We expect that their 
computational power will continue to grow at a double-exponential 
rate: the classical cost of simulating a quantum circuit increases expo-
nentially with computational volume, and hardware improvements will 
probably follow a quantum-processor equivalent of Moore’s law52,53, 
doubling this computational volume every few years. To sustain the 
double-exponential growth rate and to eventually offer the computa-
tional volume needed to run well known quantum algorithms, such as 
the Shor or Grover algorithms25,54, the engineering of quantum error 
correction will need to become a focus of attention.

The extended Church–Turing thesis formulated by Bernstein and 
Vazirani55 asserts that any ‘reasonable’ model of computation can be 
efficiently simulated by a Turing machine. Our experiment suggests 
that a model of computation may now be available that violates this 
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Fig. 4 | Demonstrating quantum supremacy. a, Verification of benchmarking 
methods. FXEB values for patch, elided and full verification circuits are 
calculated from measured bitstrings and the corresponding probabilities 
predicted by classical simulation. Here, the two-qubit gates are applied in a 
simplifiable tiling and sequence such that the full circuits can be simulated out 
to n = 53, m = 14 in a reasonable amount of time. Each data point is an average over 
ten distinct quantum circuit instances that differ in their single-qubit gates (for n 
= 39, 42 and 43 only two instances were simulated). For each n, each instance is 
sampled with Ns of 0.5–2.5 million. The black line shows the predicted FXEB based 
on single- and two-qubit gate and measurement errors. The close 
correspondence between all four curves, despite their vast differences in 

complexity, justifies the use of elided circuits to estimate fidelity in the 
supremacy regime. b, Estimating FXEB in the quantum supremacy regime. Here, 
the two-qubit gates are applied in a non-simplifiable tiling and sequence for 
which it is much harder to simulate. For the largest elided data (n = 53, m = 20, 
total Ns = 30 million), we find an average FXEB > 0.1% with 5σ confidence, where σ 
includes both systematic and statistical uncertainties. The corresponding full 
circuit data, not simulated but archived, is expected to show similarly 
statistically significant fidelity. For m = 20, obtaining a million samples on the 
quantum processor takes 200 seconds, whereas an equal-fidelity classical 
sampling would take 10,000 years on a million cores, and verifying the fidelity 
would take millions of years.

“Our Sycamore processor takes about 200 seconds to 
sample one instance of a quantum circuit a million times
—our benchmarks currently indicate that the equivalent 
task for a state-of-the-art classical supercomputer would 

take approximately 10,000 years”.
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samples. If we make an average-case hardness assumption and prove one 
more technical assumption known as anticoncentration, we can rule 
out additive-error simulations—that is, those satisfying inequality (2). 
Anticoncentration means that the distribution q(z) is reasonably close to 
uniform. It is known to hold for random circuits of sufficient depth20 and 
for IQP18 and is conjectured to hold for boson sampling9.

One disadvantage of average-case assumptions is that they cannot easily 
be reduced to each other. By contrast, if a problem is NP-hard in the worst 
case then we know that an algorithm that works for all inputs would yield 
algorithms for thousands of other problems in NP, which collectively 
have been studied for decades by researchers across all of science and  
engineering. But for average-case hardness, we may have different hardness  
for each distribution of instances. For example, for 3-SAT a natural distri-
bution is to choose n variables and αn random clauses. It is believed that 
random instances are likely to be satisfiable for α < αc and unsatisfiable 
for α > αc, for some critical value αc ≈ 4.2667 (ref. 16). Based on this, it is 
reasonable to conjecture that choosing α = αc yields a hard distribution, 
but this conjecture is far flimsier than the worst-case conjectures even for 
this relatively well-studied problem.

In rare cases, a problem will have the same average-case and worst-
case complexity, and it is a major open question to establish quantum 
supremacy based on such a problem. Boson sampling takes steps in that 
direction9, by using a conjecture about the average-case complexity of 
estimating a linear-algebraic function known as the permanent, while 

an average-to-worst-case reduction is known only for the exact case. 
Indeed the known reduction is based on polynomial interpolation and 
its numerical instability means that new ideas will be needed to argue 
that estimating the permanent is hard on average. More generally, a major 
open problem is to base the hardness of approximate classical simulations 
of the form of inequality (2) merely on well-believed classical complexity 
assumptions, such as non-collapse of the polynomial hierarchy.

Maximal assumptions
Another reasonable possibility is to make our complexity assumptions 
as strong as possible without contradicting known algorithms. Here the 
high-level strategy is to try to improve our (often exponential-time) clas-
sical simulations as far as possible and then to conjecture that they are 
essentially optimal. Aaronson and Chen20 have recently carried out this 
programme. Among other contributions, they developed classical simu-
lations for n-qubit, depth-d circuits that calculate matrix elements in time 
O((2d)n) and nearly linear space (note that with 2n space, O(d2n) time is 
possible). An easier task than classical simulation is to distinguish likely 
from unlikely outcomes of a quantum circuit with some exponentially 
small advantage over random guessing. The ‘QUATH’ conjecture20 asserts 
that poly-time classical algorithms cannot perform this task for quan-
tum circuits whose depth d ≥ n. The advantage of this approach is that it 
enables a ‘semi-efficient’ verification procedure which uses the quantum 
device only a polynomial number of times but still requires exponential 
time on a classical computer.

Making these conjectures as strong as possible makes our confidence 
in them as low as possible; essentially any non-trivial improvement in 
simulating quantum mechanics would refute them. But so what? Unlike 
the case of cryptographic assumptions, a too-strong conjecture would not 
create any vulnerability to hackers. In this view, hardness conjectures are 
just ways of guessing the complexity of simulating quantum systems, and 
these estimates are always subject to revision as new evidence (in the form 
of algorithms) appears. Further, these conjectures highlight the limits of 
our current simulation algorithms, so that refuting them would be both 
plausible and a substantial advance in our current knowledge.

Physical noise and simulation errors
Any realistic quantum experiment will be affected by noise, that is, unde-
sired interactions with the environment. Dealing with this noise is a 
major challenge for both theorists and experimentalists. The general 
theory of quantum fault-tolerance21,22 allows quantum computations to 
be protected against a sufficiently small amount of physically reasonable 
noise. However, although the asymptotic overhead of fault-tolerance is 
relatively minor, the constant factors involved are daunting: to produce 
a fault-tolerant logical qubit may require 103−104 physical qubits23, an 
overhead far too great for short-term quantum-supremacy experiments. 
As excessive noise can render a hard probability distribution easy to 
simulate, it is an important question to determine to what extent these 
experiments remain hard to simulate classically, even in the presence of 
uncorrected noise.

A related issue is that classical simulation algorithms of quantum cir-
cuits will have errors of their own. This could be seen as analogous to 
the fact that realistic quantum computers only implement ideal quantum 
circuits imperfectly. Classical noise could be multiplicative as in inequality 
(1) or additive as in inequality (2). Methods based on representing the 
exact state24 can achieve low enough error rates that we can think of them 
as low multiplicative error, while methods based on sampling (see, for 
example, ref. 25) naturally achieve low additive error. For multiplicative 
noise it is relatively easy to show hardness results. IQP circuits remain 
hard to simulate under this notion of noise11, and similar results have 
since been shown for the one clean qubit model26 and other restricted 
classes of circuits. However, additive noise is arguably a more natural 
model, and ruling out such simulations would be a stronger result.

Addressing this question was one of the major steps forward taken by 
Aaronson and Arkhipov9 in their work on boson sampling. Based on 
two reasonable (yet currently unproven) conjectures, they argued that 

BOX 2
Random quantum circuits
Unlike boson sampling, some quantum-supremacy proposals remain 
within the standard quantum circuit model. In the model of commuting 
quantum circuits10 known as IQP (instantaneous quantum polynomial-
time), one considers circuits made up of gates that all commute, and 
in particular are all diagonal in the X basis; see Box 2 Figure below. 
Although these diagonal gates may act on the same qubit many times, 
as they all commute, in principle they could be applied simultaneously. 
The computational task is to sample from the distribution on 
measurement outcomes for a random circuit of this form, given a !xed 
input state. Such circuits are both potentially easier to implement than 
general quantum circuits and have appealing theoretical properties that 
make them simpler to analyse11,18. However, this very simplicity may 
make them easier to simulate classically too. Of course, one need not 
be restricted to commuting circuits to demonstrate supremacy. The 
quantum-AI group at Google has recently suggested an experiment 
based on superconducting qubits and non-commuting gates12. The 
proposal is to sample from the output distributions of random quantum 
circuits, of depth around 25, on a system of around 49 qubits arranged 
in a 2D square lattice structure (see Fig. 1). It has been suggested12 
that this should be hard to simulate, based on (a) the absence of any 
known simulation requiring less than a petabyte of storage, (b) IQP-style 
theoretical arguments18 suggesting that larger versions of this system 
should be asymptotically hard to simulate, and (c) numerical evidence12 
that such circuits have properties that we would expect in hard-to-
simulate distributions. If this experiment were successful, it would  
come very close to being out of reach of current classical simulation  
(or validation, for that matter) using current hardware and algorithms.

Box 2 Figure | Example of an IQP circuit. Between two columns of 
Hadamard gates (H) is a collection of diagonal gates (T and controlled-√Z).  
Although these diagonal gates may act on the same qubit many times 
they all commute, so in principle could be applied simultaneously.
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quantum processor time is only about 30 seconds. The bitstring samples 
from all circuits have been archived online (see ‘Data availability’ section) 
to encourage development and testing of more advanced verification 
algorithms.

One may wonder to what extent algorithmic innovation can enhance 
classical simulations. Our assumption, based on insights from complex-
ity theory11–13, is that the cost of this algorithmic task is exponential in 
circuit size. Indeed, simulation methods have improved steadily over the 
past few years42–50. We expect that lower simulation costs than reported 
here will eventually be achieved, but we also expect that they will be 
consistently outpaced by hardware improvements on larger quantum 
processors.

Verifying the digital error model
A key assumption underlying the theory of quantum error correction 
is that quantum state errors may be considered digitized and local-
ized38,51. Under such a digital model, all errors in the evolving quantum 
state may be characterized by a set of localized Pauli errors (bit-flips or 
phase-flips) interspersed into the circuit. Since continuous amplitudes 
are fundamental to quantum mechanics, it needs to be tested whether 
errors in a quantum system could be treated as discrete and probabil-
istic. Indeed, our experimental observations support the validity of 
this model for our processor. Our system fidelity is well predicted by a 
simple model in which the individually characterized fidelities of each 
gate are multiplied together (Fig. 4).

To be successfully described by a digitized error model, a system 
should be low in correlated errors. We achieve this in our experiment by 

choosing circuits that randomize and decorrelate errors, by optimizing 
control to minimize systematic errors and leakage, and by designing 
gates that operate much faster than correlated noise sources, such as 
1/f flux noise37. Demonstrating a predictive uncorrelated error model 
up to a Hilbert space of size 253 shows that we can build a system where 
quantum resources, such as entanglement, are not prohibitively fragile.

The future
Quantum processors based on superconducting qubits can now perform 
computations in a Hilbert space of dimension 253 ≈ 9 × 1015, beyond the 
reach of the fastest classical supercomputers available today. To our 
knowledge, this experiment marks the first computation that can be 
performed only on a quantum processor. Quantum processors have 
thus reached the regime of quantum supremacy. We expect that their 
computational power will continue to grow at a double-exponential 
rate: the classical cost of simulating a quantum circuit increases expo-
nentially with computational volume, and hardware improvements will 
probably follow a quantum-processor equivalent of Moore’s law52,53, 
doubling this computational volume every few years. To sustain the 
double-exponential growth rate and to eventually offer the computa-
tional volume needed to run well known quantum algorithms, such as 
the Shor or Grover algorithms25,54, the engineering of quantum error 
correction will need to become a focus of attention.

The extended Church–Turing thesis formulated by Bernstein and 
Vazirani55 asserts that any ‘reasonable’ model of computation can be 
efficiently simulated by a Turing machine. Our experiment suggests 
that a model of computation may now be available that violates this 
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Fig. 4 | Demonstrating quantum supremacy. a, Verification of benchmarking 
methods. FXEB values for patch, elided and full verification circuits are 
calculated from measured bitstrings and the corresponding probabilities 
predicted by classical simulation. Here, the two-qubit gates are applied in a 
simplifiable tiling and sequence such that the full circuits can be simulated out 
to n = 53, m = 14 in a reasonable amount of time. Each data point is an average over 
ten distinct quantum circuit instances that differ in their single-qubit gates (for n 
= 39, 42 and 43 only two instances were simulated). For each n, each instance is 
sampled with Ns of 0.5–2.5 million. The black line shows the predicted FXEB based 
on single- and two-qubit gate and measurement errors. The close 
correspondence between all four curves, despite their vast differences in 

complexity, justifies the use of elided circuits to estimate fidelity in the 
supremacy regime. b, Estimating FXEB in the quantum supremacy regime. Here, 
the two-qubit gates are applied in a non-simplifiable tiling and sequence for 
which it is much harder to simulate. For the largest elided data (n = 53, m = 20, 
total Ns = 30 million), we find an average FXEB > 0.1% with 5σ confidence, where σ 
includes both systematic and statistical uncertainties. The corresponding full 
circuit data, not simulated but archived, is expected to show similarly 
statistically significant fidelity. For m = 20, obtaining a million samples on the 
quantum processor takes 200 seconds, whereas an equal-fidelity classical 
sampling would take 10,000 years on a million cores, and verifying the fidelity 
would take millions of years.

“Our Sycamore processor takes about 200 seconds to 
sample one instance of a quantum circuit a million times
—our benchmarks currently indicate that the equivalent 
task for a state-of-the-art classical supercomputer would 

take approximately 10,000 years”.

IBM:10’000 years can be reduced to several days. Let us wait!
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Why Do We Need Quantum Computers?

Search and optimisation Simulating complex systems Factorization

Bad news: Breaking popular public-key cryptography primitives:

Peter Shor has proposed an algorithm for factorization and 
discrete logarithms for polynomial time for a quantum computer.



Quantum Computers for Breaking Cryptosystems

§ Modern asymmetric cryptography is based on the 
complexity of solving a certain class of 
mathematical problems, for example, factorization 
(factorization into prime factors).

§ At the moment, an effective algorithm for solving 
such a problem is unknown, so an attacker needs 
a lot of time to crack a cryptographic key.

§ In 1995, Peter Shore proposed an algorithm for 
factorization and discrete logarithms for 
polynomial time for a quantum computer.

§ The number 15 was decomposed into multipliers 
3 and 5 using a quantum computer using a 
computer with 7 qubits.

||Matthias Troyer

Breaking RSA encryption with Shor’s algorithm?

Not a long-term “killer-app” since we can switch to post-quantum encryption 
▪ quantum cryptography 
▪ post-quantum encryption (e.g. lattice based cryptography)

25

RSA cracked in CPU years Shor
453 bits 1999 10 1 hour
768 bits 2009 2000 5 hours
1024 bits 1000000 10 hours

estimates based on 10 ns gate time  
and minimal number of 2N+3 qubits
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Breaking RSA encryption with Shor’s algorithm?

Not a long-term “killer-app” since we can switch to post-quantum encryption 
▪ quantum cryptography 
▪ post-quantum encryption (e.g. lattice based cryptography)

25

RSA cracked in CPU years Shor
453 bits 1999 10 1 hour
768 bits 2009 2000 5 hours
1024 bits 1000000 10 hours

estimates based on 10 ns gate time  
and minimal number of 2N+3 qubits

Estimation based on 10 ns gate time and 2N+3 logical qubits 

Quantum Computers for Breaking Cryptosystems



Quantum computers for breaking cryptosystems

1995:
Universal quantum computer
2N+1 logical qubits

2012:
Universal quantum computer
1’000’000’000 physical qubits
1.1 day

2018:
No universal quantum 
computer

2019:
Universal quantum computer
8’000’000 physical qubits
8 hours



Quantum Computers for Breaking Cryptosystems

||Matthias Troyer

Grover search

Search an unsorted database of N entries with √N queries 

However, the query needs to be implemented! 

▪ Querying an N-entry database needs at least O(N) hardware resources 
▪ Can perform the query classically in log(N) time given O(N) resources 

Only useful if the query result can be efficiently calculated on the fly! 
What are the important applications satisfying this criterion?

26

Applying Grover’s algorithm to AES:

quantum resource estimates

Markus Grassl
1
, Brandon Langenberg

2
, Martin Roetteler

3

and Rainer Steinwandt
2

1 Universität Erlangen-Nürnberg & Max Planck Institute for the Science of Light

2 Florida Atlantic University

3 Microsoft Research
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Impact on symmetric cryptography: Exhaustive search of a k-bit key 
in time 2k/2k/2 with 



Quantum Security of Blockchains

OBITUARY How Paul Allen, 
Microsoft philanthropist, 
rebooted brain research p.474

MUSIC Celebrating the 
female pioneers of 
electronica p.470

SPACE Rock legend Brian May 
retells the race to the  
Moon — in 3D p.469

CONSERVATION The people and 
places that invented the 
word ‘environment’ p.468

Quantum computers put 
blockchain security at risk

Bitcoin and other cryptocurrencies will founder unless they integrate quantum 
technologies, warn Aleksey K. Fedorov, Evgeniy O. Kiktenko and Alexander I. Lvovsky. 

By 2025, up to 10% of global gross 
domestic product is likely to be 
stored on blockchains1. A block-

chain is a digital tool that uses cryptography 
techniques to protect information from 
unauthorized changes. It lies at the root of the 

Bitcoin cryptocurrency2. Blockchain-related 
products are used everywhere from finance 
and manufacturing to health care, in a market 
worth more than US$150 billion.

When information is money, data security, 
transparency and accountability are crucial. 

A blockchain is a secure digital record, or 
ledger. It is maintained collectively by users 
around the globe, rather than by one central 
administration. Decisions such as whether 
to add an entry (or block) to the ledger are 
based on consensus — so personal trust 

Quantum cryptography equipment, which uses the principle of entanglement to encode data that only the sender and receiver can access.
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Mosca Theorem

Post-quantum cryptography is cryptography under the assumption that 
the attacker has a large quantum computer



Long-range Post-Quantum Security Plan

… Firms need to pay attention 
to these developments and 
have roadmaps in place to 
follow through on those 
recommendations. 

A risk is that adversaries could 
capture and store encrypted 
data today for decryption in 
the future, when quantum 
computers become available.
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How to proceed: the alternatives

New
Q-safe

algorithms
QKD

QKD = Quantum Key Distribution



Kotelnikov-Shannon Theory on Absolute Security

Transferring secure message using unsecured 
channel: encryption

• the key is secret, it is known to only the legitimate users; 
• the key length is no shorter than the message length;
• the key is random;
• the key is employed only once.

Idea: make (message)XOR(key) operation with one-time key. Never re-use!



Kotelnikov-Shannon Theory on Absolute Security

Transferring secure message using unsecured 
channel: encryption

• the key is secret, it is known to only the legitimate users; 
• the key length is no shorter than the message length;
• the key is random;
• the key is employed only once.

How distribute this key? No RSA/DH because of quantum attackers…



Industry Experience in Quantum Computing

Quantum-safe (quantum-secured, 
quantum-resistant) cryptography 

Methods that are protected from attacks with 
quantum computers

Post-quantum Cryptography

New generation of cryptographic 
algorithms, that are based on 

mathematical tasks with equivalent (or 
comparable) complexity both for classical 

and quantum computers 

Quantum Cryptography
(Quantum communications, 

quantum key distribution and 
etc)

Using of quantum states for distribution 
of keys for encryption. 



Quantum Key Distribution

• Measure without disturbing 

• Split photons

• Copy quantum states



Quantum Key Distribution

2000 km  "Quantum backbone"

Quantum satellite: cryptography more than 1200 km, teleportation more 
than 500 km



Quantum Key Distribution

Б. Андроновский переулок Ул. Вавилова

Secure Conferencing Protected

workflow
Quantum

blockchain

VPN-tunnel

The following applications are planned to be implemented
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Post-Quantum Algorithms

Cryptography of today. To break it a classical 
computer need exponential time (very slow), 
quantum needs polynomial time (very fast). 

Post-quantum cryptography. Tasks with 
equivalent (or comparable) complexity both 
for classical and quantum computers.



Post-Quantum Algorithms



Make quantum-security update with us: our core solution

PQRL Library: This is a set of tools that allows upgrading your products and infrastructure to quantum 
security quickly, simply, and conveniently.



Thank you for your attention! 

Aleksey Fedorov 
 

Think Big — Scale Fast

mailto:akf@rqc.ru


Make quantum-security update with us: our core solution
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Make quantum-security update with us: our core solution
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