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Introduction

JSON documents:

● Describes objects with substructure
● Flexible scheme
● Used in WEB
● Supported in some RDBMS
● Not included in SQL standard



Introduction

1. SQL tables may contain in the columns JSON type
2. Functions allowing developers generate JSON documents directly in SQL 

queries
3. Transformation of string data types to JSON and reverse operations
4. CAST-operator both into JSON and out of it
5. Operations to check correctness of the documents
6. Operations to work with documents directly in SQL
7. Indexing of JSON documents



Introduction
Feature Oracle MySQL MS SQL Server PostgreSQL

1 Stored in strings Yes Stored in strings Yes,
Binary storage is possible

2 Incompletely Yes Yes Yes

3 Incompletely Yes Yes Yes

4 Incompletely Yes Incompletely Yes

5 Yes Yes Yes Yes

6 Yes Yes Incompletely Yes

7 Full text search No No For binary representation



Introduction

PostgreSQL provides:

● json, jsonb data types

● json and jsonb operators:
○ “->”, “->>”, “#>”, “#>>” - get document element as document or text

● jsonb operators:
○ “@>”, “<@” - comparison of documents
○ “?”, “?|”, “?&” - key existence
○ “||”, “-”, “#-” - document modifications

● Addition JSON processing functions

● Aggregate functions
● GIN Index for jsonb



Introduction
● The cost of RAM decreases
● Increase of data processing 

performance
● Horizontal scaling

● CAP-theorem
● Power supply dependency



Apache Ignite

Apache Ignite is the open source version of GridGain Systems product. It’s 
memory-centric distributed database, caching, and processing platform designed 
to work on large volumes of data

● Read-/Write-Through and Write-behind operations
● ANSI SQL:1999 with support of the most dialects
● ACID compliance
● Guaranteed data consistency
● Dynamic scalability
● All the local data and indexes can be duplicated on external storage
● JCache interface,  JDBC, ODBC
● Java, C++, .Net/C#, Scala, Node.JS



Implementing of JSON processing

For SQL querying on lower layer used H2 Database Engine:

● SQL Parsing
● Local data storage

Apache Ignite has functions:

● Data distribution
● Consistency
● Local results collection



Implementation of JSON processing

● Used Java library FasterXML/Jackson for JSON documents serialization 
(deserialization) and processing on lower layer

● Implemented only text storage of documents
● Implemented PostgreSQL operators for json and jsonb
● In Apache Ignite implemented JSON processing only in SELECT queries in 

cache mode



RDBMS caching

● In Apache Ignite implemented CacheStoreAdapter to synchronization with 
PostgreSQL

● Tested cluster configurations are 4, 8 and 16 nodes. Each one is a virtual 
machine with 92GB of RAM, 3 processor cores at 2.1 GHz (Intel Xeon Gold 
6152) running under Xen hypervisor and each virtual machine has dedicated 
physical server-class SSDs

● Testing based on pg_nosql_benchmark



RDBMS caching

1. SELECT count(id) FROM table WHERE data->>’brand’ = ‘ACME’;
2. SELECT count(id) FROM table WHERE data::JSONB ? ‘name’ AND data->>’name’ = ‘AC3 

Case Red’;
3. SELECT count(id) FROM table WHERE data::JSONB ?& array[‘type’, ‘name’, ‘price’];
4. SELECT count(id) FROM table WHERE data::JSONB ?& array[‘type’, ‘name’, ‘price’] AND 

data->>’type’ = ‘phone’;
5. SELECT count(id) FROM table WHERE (data->’limits’->’voice’->>’n’)::DECIMAL > 400;
6. SELECT count(id) FROM table WHERE (data#>>’{limits, voice, n}’)::DECIMAL> 400;
7. SELECT count(id) FROM table WHERE data::JSONB?'color' AND data->>'color' = 'black' 

AND data::JSONB?'price' AND (data->>'price')::DECIMAL = 12.5;
8. SELECT count(id) FROM table WHERE data::JSONB@>'{"color":"black", "price":12.5}';



Results



Conclusion

● Implemented JSON processing in H2 Database Engine
○ Text storage
○ PostgreSQL operators for document processing

● Implemented JSON processing in Apache Ignite with RDBMS caching
○ Not implemented Write-Through operation
○ Must be loaded full database
○ High overhead on document serialization
○ Good scaling


