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Introduction



Audience

› Software engineers/architects

› Event stream processing

› Distributed systems
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Features

› Stream of offers (tens per second)

› Up to 500K subscriptions

› Complex multi field conditions

› Low latency (seconds)
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Motivation



Customer subscriptions

› Short notification delays (minutes)

› Instant subscription modifications
› Notifications transport

› email, SMS, push, pigeons, owls, etc.
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Non-functional requirements

› Scalability by subscriptions
› millions

› Scalability by events
› tens-hundreds per second

› Fault tolerance
› nodes, network, data centers
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Naive solution

Pros:
› Simplicity

› Working

Cons:
› High notification
latency (hours, days)

› Search system
extra load

› Scalability?
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Not so naive approach

Pros:
› Low latency

› No extra work
› Possibly scalable

Cons:
› More complex, but
not complicated
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Matching





Data model

› Event:

› Subscription:
mark=FORD&model=FOCUS&model=MONDEO&year=2015
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A better way

Commonalities:
› mark=FORD&model=FOCUS

› mark=FORD&year=2010

› year=2010&price_from=500000

Data structures
› BDD

› DAG

› Search tree

› Indices
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Architecture









Architecture

Matcher















Resilience

› Subscriptions => Tokens
› Token ≈responsibility

› Nodes distribute tokens
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Architecture

Notifier

















Implementation



Scala

› Functional & concise
› Persistent data structures for matching tree
(1Kloc)

› No need for synchronization

› Property-based testing (matching algorithm)

1http://www.scalacheck.org
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Akka

› actors (events)

› akka-remoting (networking)

› protobuf (serialization)

› akka-fsm (aggregation)
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Zookeeper

› Exclusive token
acquirement

› Service discovery

http://zookeeper.apache.org 70



Conclusion



Achievements

› Low customer notification latency (seconds)

› No extra load
› All on 3 nodes x 2 DC

› 200K subs — 1G heap
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300K subscriptions in production
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300K subscriptions stress testing (cluster)
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150K subscriptions stress testing (node)
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Contacts
Dmitry Schitinin
Backend infrastructure team @ Yandex.Classifieds
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