
Streaming event matching

Dmitry Schitinin



About

Backend infrastructure team

› Services
› Libraries
› Frameworks

@ Yandex.Classifieds

› auto.ru

› auto.yandex.ru

› rabota.yandex.ru

› realty.yandex.ru

› travel.yandex.ru

https://stat.yandex.ru 2



About

Backend infrastructure team

› Services
› Libraries
› Frameworks

@ Yandex.Classifieds

› auto.ru

› auto.yandex.ru

› rabota.yandex.ru

› realty.yandex.ru

› travel.yandex.ru

https://stat.yandex.ru 2



About

Backend infrastructure team

› Services
› Libraries
› Frameworks

@ Yandex.Classifieds

› auto.ru

› auto.yandex.ru

› rabota.yandex.ru

› realty.yandex.ru

› travel.yandex.ru
https://stat.yandex.ru 2



Introduction



Audience

› Software engineers/architects

› Event stream processing

› Distributed systems

4









Features

› Stream of offers (tens per second)

› Up to 500K subscriptions

› Complex multi field conditions

› Low latency (seconds)

8



Features

› Stream of offers (tens per second)

› Up to 500K subscriptions

› Complex multi field conditions

› Low latency (seconds)

8



Features

› Stream of offers (tens per second)

› Up to 500K subscriptions

› Complex multi field conditions

› Low latency (seconds)

8



Features

› Stream of offers (tens per second)

› Up to 500K subscriptions

› Complex multi field conditions

› Low latency (seconds)

8



Features

› Stream of offers (tens per second)

› Up to 500K subscriptions

› Complex multi field conditions

› Low latency (seconds)

8



Motivation



Customer subscriptions

› Short notification delays (minutes)

› Instant subscription modifications
› Notifications transport

› email, SMS, push, pigeons, owls, etc.

10



Customer subscriptions

› Short notification delays (minutes)

› Instant subscription modifications
› Notifications transport

› email, SMS, push, pigeons, owls, etc.

10



Customer subscriptions

› Short notification delays (minutes)

› Instant subscription modifications

› Notifications transport

› email, SMS, push, pigeons, owls, etc.

10



Customer subscriptions

› Short notification delays (minutes)

› Instant subscription modifications
› Notifications transport

› email, SMS, push, pigeons, owls, etc.

10



Non-functional requirements

› Scalability by subscriptions
› millions

› Scalability by events
› tens-hundreds per second

› Fault tolerance
› nodes, network, data centers

11



Non-functional requirements

› Scalability by subscriptions
› millions

› Scalability by events
› tens-hundreds per second

› Fault tolerance
› nodes, network, data centers

11



Non-functional requirements

› Scalability by subscriptions
› millions

› Scalability by events
› tens-hundreds per second

› Fault tolerance
› nodes, network, data centers

11



Non-functional requirements

› Scalability by subscriptions
› millions

› Scalability by events
› tens-hundreds per second

› Fault tolerance
› nodes, network, data centers

11

















Naive solution

Pros:
› Simplicity

› Working

Cons:
› High notification
latency (hours, days)

› Search system
extra load

› Scalability?

19



Naive solution

Pros:
› Simplicity

› Working

Cons:

› High notification
latency (hours, days)

› Search system
extra load

› Scalability?

19



Naive solution

Pros:
› Simplicity

› Working

Cons:
› High notification
latency (hours, days)

› Search system
extra load

› Scalability?

19



Naive solution

Pros:
› Simplicity

› Working

Cons:
› High notification
latency (hours, days)

› Search system
extra load

› Scalability?

19



Naive solution

Pros:
› Simplicity

› Working

Cons:
› High notification
latency (hours, days)

› Search system
extra load

› Scalability?
19







Not so naive approach

Pros:
› Low latency

› No extra work
› Possibly scalable

Cons:
› More complex, but
not complicated

22



Not so naive approach

Pros:

› Low latency

› No extra work
› Possibly scalable

Cons:
› More complex, but
not complicated

22



Not so naive approach

Pros:
› Low latency

› No extra work
› Possibly scalable

Cons:
› More complex, but
not complicated

22



Not so naive approach

Pros:
› Low latency

› No extra work

› Possibly scalable

Cons:
› More complex, but
not complicated

22



Not so naive approach

Pros:
› Low latency

› No extra work
› Possibly scalable

Cons:
› More complex, but
not complicated

22



Not so naive approach

Pros:
› Low latency

› No extra work
› Possibly scalable

Cons:

› More complex, but
not complicated

22



Not so naive approach

Pros:
› Low latency

› No extra work
› Possibly scalable

Cons:
› More complex

, but
not complicated

22



Not so naive approach

Pros:
› Low latency

› No extra work
› Possibly scalable

Cons:
› More complex, but
not complicated

22



Matching





Data model

› Event:

› Subscription:
mark=FORD&model=FOCUS&model=MONDEO&year=2015

25





A better way

Commonalities:
› mark=FORD&model=FOCUS

› mark=FORD&year=2010

› year=2010&price_from=500000

Data structures
› BDD

› DAG

› Search tree

› Indices

27



A better way

Commonalities:
› mark=FORD&model=FOCUS

› mark=FORD&year=2010

› year=2010&price_from=500000

Data structures
› BDD

› DAG

› Search tree

› Indices

27



A better way

Commonalities:
› mark=FORD&model=FOCUS

› mark=FORD&year=2010

› year=2010&price_from=500000

Data structures
› BDD

› DAG

› Search tree

› Indices

27



























Architecture









Architecture

Matcher















Resilience

› Subscriptions => Tokens
› Token ≈responsibility

› Nodes distribute tokens

51



Resilience

› Subscriptions => Tokens

› Token ≈responsibility

› Nodes distribute tokens

51



Resilience

› Subscriptions => Tokens
› Token ≈responsibility

› Nodes distribute tokens

51



Resilience

› Subscriptions => Tokens
› Token ≈responsibility

› Nodes distribute tokens

51

















Architecture

Notifier

















Implementation



Scala

› Functional & concise
› Persistent data structures for matching tree
(1Kloc)

› No need for synchronization

› Property-based testing (matching algorithm)

1http://www.scalacheck.org

68



Scala

› Functional & concise

› Persistent data structures for matching tree
(1Kloc)

› No need for synchronization

› Property-based testing (matching algorithm)

1http://www.scalacheck.org

68



Scala

› Functional & concise
› Persistent data structures for matching tree
(1Kloc)

› No need for synchronization

› Property-based testing (matching algorithm)

1http://www.scalacheck.org

68



Scala

› Functional & concise
› Persistent data structures for matching tree
(1Kloc)

› No need for synchronization

› Property-based testing (matching algorithm)

1http://www.scalacheck.org

68



Scala

› Functional & concise
› Persistent data structures for matching tree
(1Kloc)

› No need for synchronization

› Property-based testing (matching algorithm)

1http://www.scalacheck.org

68



Akka

› actors (events)

› akka-remoting (networking)

› protobuf (serialization)

› akka-fsm (aggregation)

69



Akka

› actors (events)

› akka-remoting (networking)

› protobuf (serialization)

› akka-fsm (aggregation)

69



Akka

› actors (events)

› akka-remoting (networking)

› protobuf (serialization)

› akka-fsm (aggregation)

69



Akka

› actors (events)

› akka-remoting (networking)

› protobuf (serialization)

› akka-fsm (aggregation)

69



Akka

› actors (events)

› akka-remoting (networking)

› protobuf (serialization)

› akka-fsm (aggregation)

69



Zookeeper

› Exclusive token
acquirement

› Service discovery

http://zookeeper.apache.org 70



Conclusion



Achievements

› Low customer notification latency (seconds)

› No extra load
› All on 3 nodes x 2 DC

› 200K subs — 1G heap

72



Achievements

› Low customer notification latency (seconds)

› No extra load
› All on 3 nodes x 2 DC

› 200K subs — 1G heap

72



300K subscriptions in production

73



300K subscriptions stress testing (cluster)

74



150K subscriptions stress testing (node)

75



Contacts
Dmitry Schitinin
Backend infrastructure team @ Yandex.Classifieds

dimas@yandex-team.ru

76


	Introduction
	Motivation
	Matching
	Architecture
	Matcher
	Notifier

	Implementation
	Conclusion

