
Расширение языка C
для поддержки

процедурно–параметрического
программирования

http://www.softcraft.ru/ppp/

Александр Легалов
Павел Косов
Александр Сухих

НИУ ВШЭ
Департамент программной
инженерии

ХXI конференция
разработчиков свободных
программ

http://www.softcraft.ru/ppp/

2

Динамическая проверка типов во время
выполнения и гибкая разработка ПО

Специализации (альтеранивы)

3

struct Rectangle { int x; int y; };
struct Circle { int r; };
struct Triangle {

int a; int b; int c;
};
void Procedue(Rectangle& r);
void Procedue(Circle& r);
void Procedue(Triangle& r);
enum key {
 rectangle, circle, triangle
};
struct Figure {

key k;
union {

Rectangle r;
Circle c;
Triangle t;

};
};

void Procedure(Figure& f)
{

switch(key) {
case rectangle: P

Procedure(f.r);
break;
case circle:

Procedure(f.c);
break;
case triangle:

Procedure(f.t);
break;
}

}

Динамическая проверка типов
в процедурных и ОО программах

Обобщение

F(X)
F(X, Y, Z)

Объектно-ориентированный стиль

4

Процедурный стиль

X.F()
X.F(Y,Z)

F<X>()
F<X,Y,Z>()
F<X,Y>(Z)

Процедурно-параметрический стиль

1.Иная разновидность динамического полиморфизма.
2.Перекрытие многих возможностей ОО парадигмы (монометодов).
3.Непосредственная инструментальная поддержка мультиметодов

(множественного полиморфизма).
4.При формировании альтернатив (специализаций) можно использовать

именованные типы, указатели на них, неименованные структуры.
5.Относительная независимость формирования данных и функций,

позволяющая использовать 4П с другими парадигмами и, как следствие,
возможность ее встраивания даже в уже существующие языки
программирования (есть ли смысл в дублировании иного
полиморфизма?).

6.По сравнению с известными подходами более гибкое эволюционное
расширение программ без изменения ранее написанного кода как при
нисходящем, так и при восходящем проектировании.

7.Много обобщений от одних и тех же основ специализаций.

Особенности процедурно-параметрической
парадигмы программирования (4П)

5http://www.softcraft.ru/ppp/

http://www.softcraft.ru/ppp/

6

Иная разновидность динамического полиморфизма
C++ PPC

Base

Base

VT

VT F

FF

VT

FF

VT

FF

Child1 Child2 Childn

BaseBase ...

1 n2

0

Generalization (specialization0)

F 0 1 2 ...

F F F

foundationnfoundation2foundation1

n

...

...

Разновидности динамического полиморфизма в статически типизированных языках:
1) ОО полиморфизм (C++, Java, C#…)
2) Статическая утиная типизация (Go, Rust)
3) Процедурно-параметрический полиморфизм (O2M, PPC) – иное
техническое решение для поддержки динамического полиморфизма

Варианты построения специализаций

7
Компилятор ppclang – расширение clang:
https://gitverse.ru/kpdev/llvm-project

// Основа до обобщения
typedef struct Rectangle {
 int x, y;
} Rectangle;
// Обобщение
typedef struct Figure {} <> Figure;
// Figure.rect – Явное использование признака
Figure + < rect: Rectangle; >;
// Основа после обобщения
typedef struct Triangle {
 int a, b, c;
} Triangle;
// Figure.Triangle – Использовани имени типа
Figure + < Triangle; >;
// Figure.Point – Использование только признака
// (моделирование эволюционно расширяемого enum
Figure + < Point: void; >;
// Рекурсия (Непосредственное применение)
typedef struct Decorator {
 unsigned int color;
} < Figure; > Decorator;
// Figure.decor
Figure + < decor: Decorator; > ;
// Рекурсия
// (Использование указателя как специализации)
Decorator + < fig: Figure*; > ;

https://gitverse.ru/kpdev/llvm-project

Procedural Parametric C (PPC)
иная техника написания кода

8

typedef struct Figure {} <> Figure;
...
// Prototype of a generalized function
double FigurePerimeter<Figure *f>()

typedef struct Rectangle {
 int x, y;
} Rectangle;

typedef struct Triangle {
 int a, b, c;
} Triangle;

Figure + < rect: Rectangle; >;
Figure + < trian: Triangle; >;

...

// Обобщенная функция вычисления периметра
double FigurePerimeter<Figure *f>() = 0;

// Обработчики специализаций (альтернатив)

double RectanglePerimeter(Rectangle *r);
// Вычисление периметра для Figure.rect
double FigurePerimeter<Figure.rect *f>() {
 return RectanglePerimeter(&(f->@));
 // или: return (double)(2*(f->@x + f->@y));
}

double TrianglePerimeter(Triangle *t);
// Вычисление периметра для Figure.trian
double FigurePerimeter<Figure.trian *f>() {
 return TrianglePerimeter(&(f->@));
 // или: return (double)(f->@a + f->@b + f->@c);
}

// Обработчики для отдельных основ специализаций
// в других единицах компиляции

double RectanglePerimeter(Rectangle *r) {
 return (double)(2*(r->x + r->y));
}

double TrianglePerimeter(Triangle *t) {
 return (double)(t->a + t->b + t->c);
}

Эволюционная поддержка множественного полиморфизма

9

Формируются многомерные таблицы для
обработчиков специализаций

0 1 2 3

0 F00 F01 F02 F03

1 F10 F11 F12 F13

2 F20 F21 F22 F23

3 F30 F31 F32 F30

0

321

Figure

10

//--
void Multimethod(Figure* f1, Figure* f2, FILE* ofst) {
 switch(f1->k) {
 case RECTANGLE:
 switch(f2->k) {
 case RECTANGLE:
 MMRR((Rectangle*)f1, (Rectangle*)f2, ofst);
 break;
 case TRIANGLE:
 MMRT((Rectangle*)f1, (Triangle*)f2, ofst);
 break;
 case CIRCLE:
 MMRC((Rectangle*)f1, (Circle*)f2, ofst);
 break;
 default:
 fprintf(ofst, "1st is RECTANGLE. Incorrect key of figure 2 = %d\n", f2->k);
 }
 break;
 case TRIANGLE:
 switch(f2->k) {
 case RECTANGLE:
 MMTR((Triangle*)f1, (Rectangle*)f2, ofst);
 break;
 case TRIANGLE:
 MMTT((Triangle*)f1, (Triangle*)f2, ofst);
 break;
 case CIRCLE:
 MMTC((Triangle*)f1, (Circle*)f2, ofst);
 break;
 default:
 fprintf(ofst, "1st is TRIANGLE. Incorrect key of figure 2 = %d\n", f2->k);
 }
 break;
 case CIRCLE:
 switch(f2->k) {
 case RECTANGLE:
 MMCR((Circle*)f1, (Rectangle*)f2, ofst);
 break;
 case TRIANGLE:
 MMCT((Circle*)f1, (Triangle*)f2, ofst);
 break;
 case CIRCLE:
 MMCC((Circle*)f1, (Circle*)f2, ofst);
 break;
 default:
 fprintf(ofst, "1st is CIRCLE. Incorrect key of figure 2 = %d\n", f2->k);
 }
 break;
 default:
 fprintf(ofst, "Incorrect key of figure 1 = %d\n", f1->k);
 }
}

Добавление мультиметода при процедурном подходе
явная централизованная проверка типа альтернативы (через ее ключ)

Расширение мультиметода при ОО подходе
диспетчеризация

11

class Figure {
public:
 // идентификация, порождение и ввод фигуры из потока
 static Figure* In(std::ifstream &ifst);
 virtual void InData(std::ifstream &ifst) = 0; // ввод данных из потока
 virtual void Out(std::ofstream &ofst) = 0; // вывод данных в стандартный поток
 virtual void Multimethod(Figure& fig2, std::ofstream &ofst) = 0; // мультиметод
 virtual void FirstRectangle(Rectangle& rect, std::ofstream &ofst) = 0;
 virtual void FirstTriangle(Triangle& trian, std::ofstream &ofst) = 0;
 virtual void FirstCircle(Circle& circ, std::ofstream &ofst) = 0;
};
//--
// прямоугольник
class Rectangle: public Figure {
 int x, y; // ширина, высота
public:
 // переопределяем интерфейс класса
 virtual void InData(std::ifstream &ifst); // ввод данных из потока
 virtual void Out(std::ofstream &ofst); // вывод данных в стандартный поток
 virtual void Multimethod(Figure& fig2, std::ofstream &ofst); // мультиметод
 virtual void FirstRectangle(Rectangle& rect, std::ofstream &ofst);
 virtual void FirstTriangle(Triangle& trian, std::ofstream &ofst);
 virtual void FirstCircle(Circle& circ, std::ofstream &ofst);
 Rectangle(): x{0}, y{0} {} // создание без инициализации.
};
//--
// треугольник
class Triangle: public Figure {
 int a, b, c; // стороны
public:
 // переопределяем интерфейс класса
 void InData(std::ifstream &ifst); // ввод данных из потока
 void Out(std::ofstream &ofst); // вывод данных в стандартный поток
 virtual void Multimethod(Figure& fig2, std::ofstream &ofst); // мультиметод
 virtual void FirstRectangle(Rectangle& rect, std::ofstream &ofst);
 virtual void FirstTriangle(Triangle& trian, std::ofstream &ofst);
 virtual void FirstCircle(Circle& circ, std::ofstream &ofst);
 Triangle(): a{0}, b{0}, c{0} {} // создание без инициализации.
};

Расширение мультиметода при ПП подходе
раздельное определение обработчиков специализаций

12

//--
// Обобщающая функция, задающая абстрактный мультиметод
void Multimethod<Figure* f1, Figure* f2>(FILE* ofst) {} //= 0;

//--
// Обработчик специализации для двух прямоугольников
void Multimethod<Figure.Rectangle* r1, Figure.Rectangle* r2>(FILE* ofst) {
 fprintf(ofst, "Rectangle - Rectangle Combination\n");
}
//--
// Обработчик специализации для прямоугольника и треугольника
void Multimethod<Figure.Rectangle* r1, Figure.Triangle* t2>(FILE* ofst) {
 fprintf(ofst, "Rectangle - Triangle Combination\n");
}
//--
// Обработчик специализации для треугольника и прямоугольника
void Multimethod<Figure.Triangle* t1, Figure.Rectangle* r2>(FILE* ofst) {
 fprintf(ofst, "Triangle - Rectangle Combination\n");
}
//--
// Обработчик специализации для двух треугольников
void Multimethod<Figure.Triangle* t1, Figure.Triangle* t2>(FILE* ofst) {
 fprintf(ofst, "Triangle - Triangle Combination\n");
}

Расширение мультиметода при ПП подходе

13

//--
// Прототип обобщающей функции, задающей абстрактный мультиметод
void Multimethod<Figure* f1, Figure* f2>(FILE* ofst);

//--
// Обработчик специализации для прямоугольника и круга
void Multimethod<Figure.Rectangle* r1, Figure.Circle* c2>(FILE* ofst) {
 fprintf(ofst, "Rectangle - Circle Combination\n");
}
//--
// Обработчик специализации для треугольника и круга
void Multimethod<Figure.Triangle* r1, Figure.Circle* c2>(FILE* ofst) {
 fprintf(ofst, "Triangle - Circle Combination\n");
}
//--
// Обработчик специализации для круга и прямоугольника
void Multimethod<Figure.Circle* c1, Figure.Rectangle* r2>(FILE* ofst) {
 fprintf(ofst, "Circle - Rectangle Combination\n");
}
//--
// Обработчик специализации для круга и треугольника
void Multimethod<Figure.Circle* c1, Figure.Triangle* t2>(FILE* ofst) {
 fprintf(ofst, "Circle - Triangle Combination\n");
}
//--
// Обработчик специализации для двух кругов
void Multimethod<Figure.Circle* c1, Figure.Circle* c2>(FILE* ofst) {
 fprintf(ofst, "Circle - Circle Combination\n");
}

14

Много обобщений от одних и тех же основ специализаций

Наш зоопарк

15

https://rutube.ru/video/4b80586896390df235cb6a94316bc956/
https://www.youtube.com/watch?v=Nz_jCQ8rmFI

https://github.com/kreofil/evo-situations/tree/main/other/animals

● Слон
● Ходит: "Топ-топ"
● Издает звуки: "Ду-ду"

● Собака
● Ходит: "Чап-чап"
● Издает: звуки "Гав-гав"

● Пингвин
● Ходит: непонятно как (по умолчанию так, как ходят те, о ком нет знаний)
● Издает звуки: "Линукс рулит"
● Плавает: "Буль буль" (каждый, кто плавает, делает это уникально)

● Червяк
● Ходит: "Ползает"

https://rutube.ru/video/4b80586896390df235cb6a94316bc956/
https://www.youtube.com/watch?v=Nz_jCQ8rmFI
https://github.com/kreofil/evo-situations/tree/main/other/animals

Варианты развития программы...

16

1. Мы забыли, что собака может плавать
Предлагается сформировать для собаки функционал, обеспечивающий поддержку плавания по
собачьи для каждого из рассматриваемых вариантов кода.

2. Мы вдруг вспомнили, что пингвин может еще и нырять
Возникают вопросы:

- Куда определить ныряние? Стоит ли включать его в другой интерфейс или создать новый (не все
ныряют)?
- Как оно будет интегрироваться с другой функциональностью?

3. Расширение общего свойства еще одной альтернативной
функциональностью

Можно, например, рассмотреть вариант, когда каждое из животных обладает таким свойством как поедание
определенной пищи. Оно есть у всех и определяется уникально для каждого (не делать обработчик по
умолчанию).

4. Добавление такой общей функциональности, как принадлежность к
классу животных

Отношение к млекопитающим, птицам и прочим - это общее свойство. Но оно повторяется. Притом для
разных животных. Разделение на отдельные категории вряд ли рационально. Поэтому интересна реализация
как подмножество категорий животного.

5. Мультиметод или множественный полиморфизм
Для каждого варианта отношений придумать свой функционал. Это просто, достаточно выводить какую-то
нестандартную фразу для каждой из комбинации животных. Например для двух аргументов:

 - Слон - собака. А он себе идет и лаю твоего не замечает.
 - Собака - слон. Ай Моська, знать она сильна, что лает на слона.

6. Добавление нового животного
Можно добавить, например, комара, рыбу, орла и т.д. С появлением комара или орла появится
необходимость ввода функционала полета. Ну а далее могут быть муха и прочие.

17

Гибкое эволюционное расширение программ

18

Паттерны проектирования

Реализованы практически все классические
паттерны
Дополнительные возможности по сравнению с ОО
паттернами проектирования:
● Эволюционное расширение функциональности с

поддержкой полиморфизма для уже
сформированных структур за счет обобщающих
функций.

● Другие подходы к реализации паттернов,
обеспечивающие разнообразные
специализированные варианты (мультиметод,
монолитные декораторы).

● Ряд паттернов уже оказались реализованными при
реализации эволюционно расширяемых программ
(декоратор, посетитель)

● Зачастую формируются более простые технические
решения

https://github.com/kreofil/evo-situations/tree/main/gof-patterns
https://github.com/kreofil/evo-situations/tree/main/oo-patterns-shvets

http://softcraft.ru/ppp/patterns/intro/

https://github.com/kreofil/evo-situations/tree/main/gof-patterns
https://github.com/kreofil/evo-situations/tree/main/oo-patterns-shvets
http://softcraft.ru/ppp/patterns/intro/

SOLID

19

● Отсутствуют проблемы в
следовании принципам SOLID.

● Многие принципы реализуются с
использованием паттернов
проектирования, которые
полностью реализованы с
использованием ППП

● Разделение данных и
полиморфных функций облегчает
следование принципам SOLID.

https://rutube.ru/video/c8fb779074c41e792552a10b871f5a4e/

https://rutube.ru/video/c8fb779074c41e792552a10b871f5a4e/

20

ППП и процесс разработки
иная техника проектирования?

ООП:
1)Прецеденты – это функции. Зачем их отображать в

классы? Искусственная привязка к конструкциям,
ограничивающим взаимодействие. Классы не всегда
эффективно отображают сложные отношения.

2)Прямое отображение не приветствуется, так как не
позволяет достичь требуемых критериев качества.
Приходится трансформировать в абстракции, не
связанные с предметной областью. Например,
паттерны...

ППП:
1)Функциональность предметной области представлена
напрямую.
2)Многие отображения в код реализуются напрямую или
более гибко.
3)Что мешает использовать ПП язык вместо ОО языка в
ОО проектах? (только отсутствие нормального языка?)
4)Возможное дополнительное влияние на процесс
проектирования?

Основные свойства и возможности 4П

21

1. Иная разновидность полиморфизма с непосредственной инструментальной поддержкой
мультиметодов.

2. Гибкое эволюционное расширение программ без изменения ранее написанного кода как при
нисходящем, так и при восходящем проектировании.

3. Более мелкие фракции данных и функций, используемые в процессе инкрементального
наращивания кода.

4. Относительная независимость процедурно-параметрического механизма, позволяющая
использовать ППП с другими парадигмами и, как следствие, возможность ее встраивания даже
в уже существующие языки программирования (есть ли смысл в дублировании иного
полиморфизма?).

5. Возможность независимого использования основ специализаций <вместо шаблонов?>.
6. Обобщение можно формировать как до создания основ специализаций (как и в ООП), так и

после, обобощая уже существующие основы специализаций.
7. Много обобщений от одних и тех же основ специализаций.
8. Повышение надежности и качества кода для ненадежных языков за счет использования ППП в

качестве обертки ненадежных конструкций (в качестве примера можно привести язык C).
9. Прямая поддержка мультиметодов как свойство ПП полиморфизма.
10.Дополнительные возможности при замене ОО подхода (альтернативная реализация паттернов

ОО проектирования).
11.В качестве специализаций можно использовать различные программные объекты

(именованные типы, указатели на них, неименованные структуры).
12.Параметризация не только типами, но и значениями за счет специальных функций.
13.Если в вызове обработчика специализаций подставлены конкретные специализации, то можно

убрать из параметричесой таблицы соответствующие измерения. Вплоть до непосредственной
подстановки нужного обработчика.

14.Возможность гибкой эквивалентной трансформации и оптимизации структуры ПП программ,
что позволяет легко заменить параметрические таблицы на другие методы реализации,
включая использование конструкций, применяемых в традиционном процедурном (монолитном)
программировании.

1. Легалов А.И. Процедурно-параметрическая парадигма программирования. Возможна ли альтернатива объектно-
ориентированному стилю? - Красноярск: 2000. Деп. рук. № 622-В00 Деп. в ВИНИТИ 13.03.2000. - 43 с.
<http://www.softcraft.ru/ppp/pppfirst/>

2. Легалов А.И. ООП, мультиметоды и пирамидальная эволюция (2002) <http://www.softcraft.ru/coding/evo/>
3. Легалов А.И. Эволюция мультиметодов при процедурном подходе (2002) <http://www.softcraft.ru/coding/evp/>
4. Легалов И.А. Применение обобщенных записей в процедурно-параметрическом языке программирования. / И.А.

Легалов // Научный вестник НГТУ. – 2007. – № 3 (28). – С. 25-38. <http://www.softcraft.ru/ppp/genrecords/>
5. Легалов А.И., Бовкун А.Я., Легалов И.А. Расширение модульной структуры программы за счет подключаемых

модулей. / Доклады АН ВШ РФ, № 1 (14). – 2010. – С. 114-125. <http://www.softcraft.ru/ppp/inclmodules/>
6. Легалов А.И., Легалов И.А., Солоха А.Ф. Эволюционное расширение программ при различных парадигмах

программирования. / Труды XVI Байкальской Всероссийской конференции «Информационные и математические
технологии в науке и управлении». Часть III. - Иркутск: ИСЭМ СО РАН, 2011. ISBN 978-5-93908-094-1. - С. 42-49.
<http://www.softcraft.ru/ppp/simplesituations/>

7. Легалов А.И., Косов П.В. Эволюционное расширение программ с использованием процедурно-параметрического
подхода // Вычислительные технологии. 2016. Т. 21. № 3. С. 56-69.
<http://www.ict.nsc.ru/jct/content/t21n3/Legalov_n.pdf>

8. Легалов А.И., Косов П.В. Расширение языка C для поддержки процедурно-параметрического полиморфизма.
Моделирование и анализ информационных систем. 2023;30(1):40-62.
<https://doi.org/10.18255/1818-1015-2023-1-40-62>

9. Легалов А.И., Косов П.В. Процедурно-параметрическое расширение языка программирования C. Синтаксис и
семантика.
<http://www.softcraft.ru/ppp/ppc/>

10.Размещение проекта с процедурно–параметрической версией языка программирования C на Gitverse.
<https://gitverse.ru/kpdev/llvm-project>

11.Примеры на Гитхаб, написанные с использованием процедурно–параметрической версии языка C.
<https://github.com/kreofil/evo-situations>

12.Прототип семантической модели (промежуточного представления), разрабатываемый с использованием ППП.
<https://github.com/kreofil/ppp-semantic-model>

Дополнительная информация

22
http://www.softcraft.ru/ppp/ref/

http://www.softcraft.ru/ppp/pppfirst/
http://www.softcraft.ru/coding/evo/
http://www.softcraft.ru/coding/evp/
http://www.softcraft.ru/ppp/genrecords/
http://www.softcraft.ru/ppp/inclmodules/
http://www.softcraft.ru/ppp/simplesituations/
http://www.ict.nsc.ru/jct/content/t21n3/Legalov_n.pdf
https://doi.org/10.18255/1818-1015-2023-1-40-62
http://www.softcraft.ru/ppp/ppc/
https://gitverse.ru/kpdev/llvm-project
https://github.com/kreofil/evo-situations
https://github.com/kreofil/ppp-semantic-model
http://www.softcraft.ru/ppp/ref/

http://www.softcraft.ru/ppp/

Благодарю за внимание!Благодарю за внимание!

http://www.softcraft.ru/ppp/

	Страница 1
	Страница 2
	Страница 3
	Страница 4
	Страница 5
	Страница 6
	Страница 7
	Страница 8
	Страница 9
	Страница 10
	Страница 11
	Страница 12
	Страница 13
	Страница 14
	Страница 15
	Страница 16
	Страница 17
	Страница 18
	Страница 19
	Страница 20
	Страница 21
	Страница 22
	Страница 23

