Metadata Driven Data Management in Distributed Computing Environments with Partial or Complete Lack of Trust Between User Groups

> A. Demichev, A. Kryukov and N. Prikhod'ko SINP MSU

> > Supported by RSF grant No. 18-11-00075

Provenance Metadata (PMD)

- Metadata describing data, provide context and are vital for accurate interpretation and use of data
- One of the most important types of metadata is provenance metadata (PMD)
 - tracking the stages at which data were obtained
 - ensuring their correct storage, reproduction and interpreting
 - ⇒ ensures the correctness of scientific results obtained on the basis of data
- The need for PMD is especially essential when large volume (big) data are jointly processed by several research teams

Multimessenger astronomy

Organizations participating in a large project integrate their local computing/storage resources into a unified distributed pool

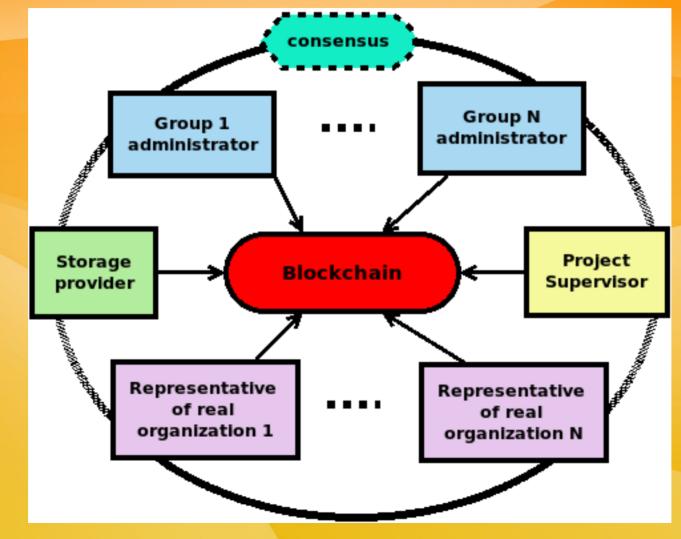
ISPRAS-2019, Dec 5-6, 2019

PMD MS Construction for Collaborative DCS

- distributed environment ⇒ distributed registry for PMD
- conditions of incomplete trust or lack of trust between groups of users of the system
- ⇒ **blockchain** = distributed registry + provides:
 - no records can inserted into the registry in hindsight
 - no entries were changed in the registry
 - the registry has never been damaged or branched
 - monitoring and restoring the complete history of data processing and analysis

PMD MS Construction: Which Blockchain

PERMISSIONLESS BLOCKCHAIN


Trust is enforced by cryptographic proof from the software protocol

Trust is enforced through restricted access to transaction validation permissionless: no restrictions on the transaction handlers

- open (public) networks of participants (Bitcoin, etc.)
- **permissioned**: transaction processing by specified entities
 - the handlers must come to a consensus about the content and the order of the recorded transactions
 - form a more controlled and predictable
 environment
 - suitable for networks with naturally existing trusted parties
 - our case: storage providers, representatives of real organizations participating in the project,...

Transaction Handlers in Collaborative DCS

ISPRAS-2019, Dec 5-6, 2019

System State of DCS Recorded in the Blockchain: preview

- The state of the entire DCS = aggregated state of the set of files stored in it with their states at the moment
- The state of the files is determined by their metadata
 - global ID + attributes, including:
 - local file name in a storage: fileName;
 - storage identifier: storageID;
 - creator identifier: creatorID;
 - owner identifier: ownerID;
 - type: type=primary/secondary/replica

Smart contracts

- Smart contracts along with the registry form the basis of a blockchain system
 - determines the executable logic that generates new states to be added to the registry
- Parties of a business process must define a common set of contracts covering common terms, data, rules, concept definitions and processes.
 - Taken together, these contracts define a business model that governs all interactions between transactional parties.
- A smart contract defines these rules between the parties in the form of executable code.

Permissioned Blockchain Platforms

Platform	Consensus	Performance	Smart Contract	Virtual Machine	Data Encry- ption	Activity (GitHub)	Popularity	Company
Hyperledger Fabric	PBFT	10k-100k/s	Yes	Chaincode	Yes	High	High	IBM
<u>Multichain</u>	Round robin	100-1000/s	No	No	No	Medium	Medium	Coin Sciences
Quorum	Time and vote based	12-100/s	Yes	EVM	Yes	Medium	High	J.P. Morgan
OpenChain	Partitioned	Thousands/s	No	Yes	Yes	Low	Medium	Coinprism
Chain Core	Federated consensus	N/A	No	Yes	Yes	High	High	Chain
Corda	BFT, etc.	N/A	Yes	JVM	Yes	High	Medium	R3
Monax	Tender-mint	10k/s	Yes	EVM	No	Medium	High	Monax

Analysis of existing platforms: the **Hyperledger Fabric** (hyperledger.org) is most suitable for the use case under consideration

ISPRAS-2019, Dec 5-6, 2019

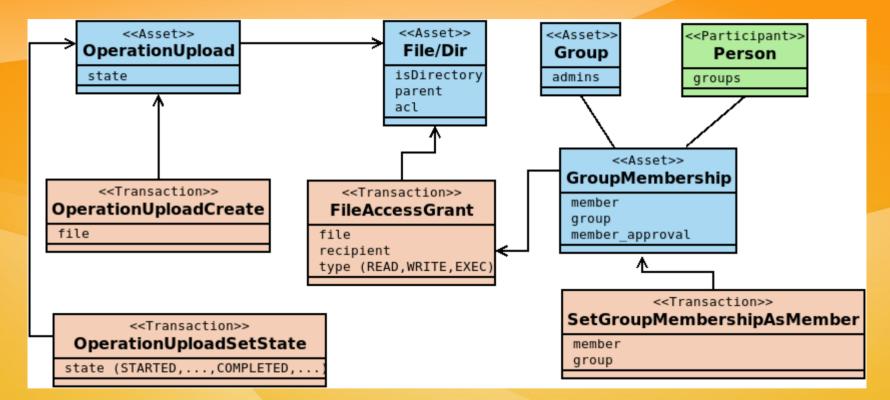
Hyperledger Fabric (HLF) → ProvHL

- ProvHL = Provenance HyperLedger
- operation of smart contracts (chaincodes)
 - adaptation of HLF for the business process of sharing storage resources
- provides a record of transactions & advanced query tools
- advanced means for managing access rights
 - access rights can be managed by network members within their competence

PMD driven data management

- two approaches are possible
 - data management systems (DMS) manage data and use a blockchain simply as a distributed log
 - data driven data management
 - metadata is written to the blockchain beforehand, and DMSs refer to the blockchain and performs the transactions recorded there
 - metadata driven data management
- ProvHL implements the second approach

Business process within HLF-platform


- Assets are tangible or intellectual resources, records of which are kept in registers
 - in our case, the assets are data files; their properties (attributes) are provenance metadata
- Participants are members of the business network.
 - they can own assets and make transaction requests
 - can have any properties if necessary
- Transaction is the mechanism of interaction of participants with assets
- Events: messages can be sent by transaction processors to inform external components of changes in the blockchain

HyperLedger Fabric → ProvHL

- Participants
 - Person
 - StorageProvider
- Assets
 - File/Directory
 - Storage
 - Operation
 - Group
 - GroupMembership

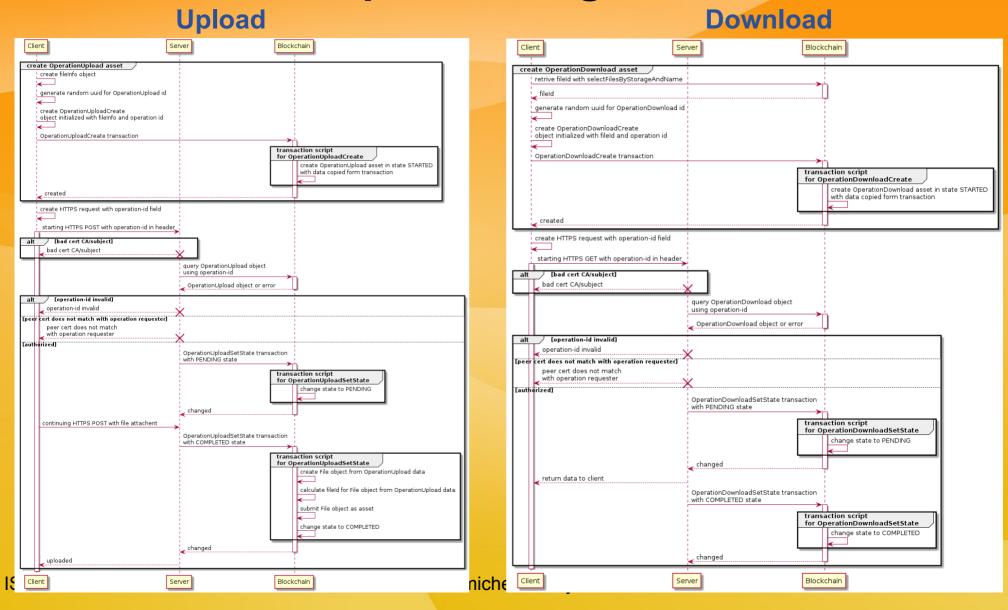
- Transactions
 - FileAccessGrant
 - FileAccessRevoke
 - OperationUploadCreate
 - OperationUploadSetState

DCS Management Model: Core Structure

There exist MANY other classes and relationships, in particular: StorageProvider, OperationCopy,..., SetGroupMembershipAsAdmin, FileAccessRevoke,... "sticky rights", ...

ISPRAS-2019, Dec 5-6, 2019

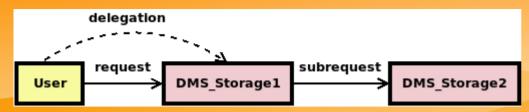
ProvHL: Basic operations ⇒ transactions


- new file upload
- file download
- file deletion
- file copy within local storage
- file copy/transfer to another local storage
- file transformation by a special service ⇒ grid-like DCS
 - each operation comprises of a number of transactions
 - each valid transaction ⇒ update of some state attributes
 - for example, after the transaction "file download" the values of the keys change: "number of file downloads" and "users who downloaded the file".

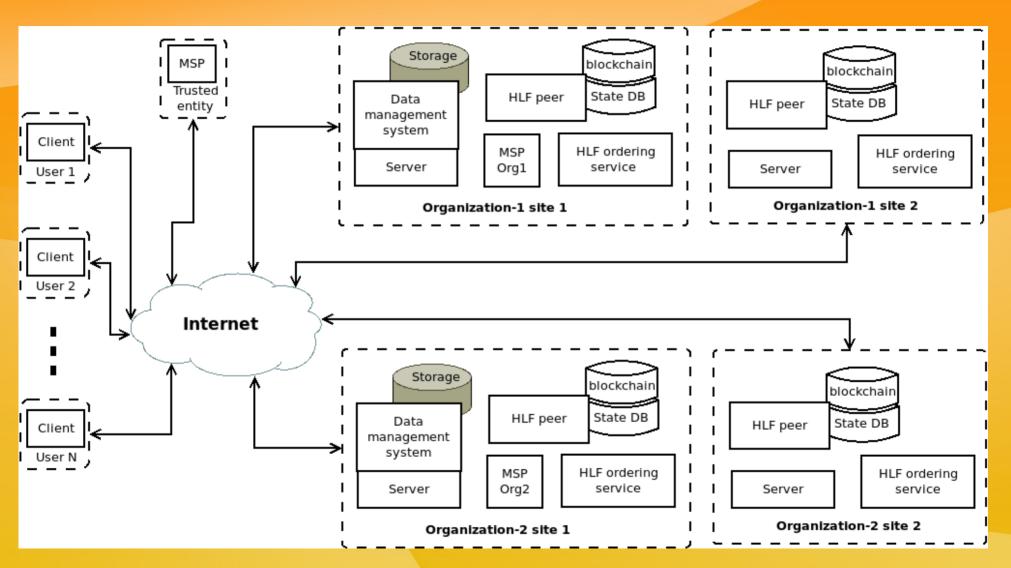
ISPRAS-2019, Dec 5-6, 2019

ProvHL operation

- Operations with files comprise of at least two types of transactions recorded in the blockchain:
 - client requests,
 - server responses
- Operation states: STARTED, COMPLETED, ERROR, ...
- Operation = asset ⇒
 - level of correspondence (history recorded in blockchain)
 ⇔ (real history of the data in the distributed storage) practically acceptable
 - delegation of rights: user/service → service


Sequence Diagrams

Consensus in Hyperledger Fabric/ProvHL


- Transaction endorsement: endorses the transactions by simulating the transaction execution process
- Ordering: set of ordering services take endorsed transactions and decide on a sequence in which the transactions will be written to the ledger
 - Ordering Consensus Algorithms
 - SOLO, Raft, Kafka, BFT,...
- Validation and commitment: committing peers first validate the transactions received from the orderers and then commit that transaction to the ledger

Rights Delegation in ProvHL

- Usual proxy-based delegation in DCS: low level of security + central service = point of failure, intrusion and bottleneck
- Due to its distributed nature, the blockchain-based delegation proves to be fully adequate to distributed computing systems.
- The use of smart contracts, in turn, provides flexibility because they allow one to define various conditions for the delegation of rights in DCSs.

ProvHL Testbed

ISPRAS-2019, Dec 5-6, 2019

Performance Characterization of HLF & ProvHL

• HLF

- for the input transaction rate up to 800 tx/sec, the transaction latency is ≤1 sec
- transaction throughput is ~ 800 tx/sec
- ProvHL (each file operation consists of 3 ÷ 7 transactions)
 - → matching results for the latency ~ 4 ÷ 7 sec
 - throughput ~ 100 ops/sec.
- quite acceptable for operations with files of sufficiently large volumes
 - typical for DCS for large scientific experiments

Conclusion (1/2)

- we have suggested the new approach to the PMD driven data management in DCSs based on the integration of
 - blockchain technology
 - smart contracts
 - metadata driven data management
 - consensus algorithms
- intended for operation in a distributed environment with administratively unrelated organizations participating in joint projects
 - conditions of incomplete trust or lack of trust between groups of users of the system

ISPRAS-2019, Dec 5-6, 2019

Conclusion (2/2)

- ProvHL system on the top of Hyperledger Fabric blockchain platform
 - completely distributed ⇒ fault-tolerant
 - safe and secure PMD and data management system
 - well granular access control management
 - including delegation of rights
 - testbed performance characteristics are promising