Compilation of OCaml memory model to Power

Egor Namakonov, Anton Podkopaev

MAX PLANCK INSTITUTE FOR SOFTWARE SYSTEMS

An execution result is explained by alternating threads

$[x]=[y]=0$		
$[x]:=1$	$a:=[x]$	$b:=[y]$
	$[y]:=1$	$c:=[x]$

An execution result is explained by alternating threads

\[

\]

An execution result is explained by alternating threads

	$[x]=[y]=0$	
	$a: x]:=1$	$a: x]$
	$[y]:=1$	$b:=[y]$
	$a=b=c=1 ?$	

An execution result is explained by alternating threads

$$
\begin{array}{|c|c|}
\hline & {[x]=[y]=0} \\
\qquad & {[x]:=1 \square a:=[x]} \\
{[y]:=1} & b:=[y] \\
a:=[x]
\end{array}
$$

An execution result is explained by alternating threads

$[\mathrm{x}]=[\mathrm{y}]=0$		
$\square[x]:=1$	$\mathrm{a}:=[\mathrm{x}]$	$\mathrm{b}:=[\mathrm{y}]$
	[y] := 1	$\mathrm{c}:=[\mathrm{x}]$
$\mathrm{a}=\mathrm{b}=\mathrm{c}=1$?		

An execution result is explained by alternating threads

An execution result is explained by alternating threads

$[x]=[y]=0$		
$\square[x]:=1$	$\mathrm{a}:=[\mathrm{x}]$	$\mathrm{b}:=[\mathrm{y}]$
$\longmapsto[y]:=1 \longmapsto c:=[x]$		
$\mathrm{a}=\mathrm{b}=\mathrm{c}=1$?		

An execution result is explained by alternating threads

$[x]=[y]=0$		
$\square[x]:=1$	a : $=$ [x]	$\mathrm{b}:=[\mathrm{y}]$
$\longmapsto[y]:=1 \longmapsto c:=[x]$		
$\mathrm{a}=\mathrm{b}=\mathrm{c}=1$		

An execution result is explained by alternating threads

$[x]=[y]=0$		
$[x]:=1$	$a:=[x]$	$b:=[y]$
	$[y]:=1$	$c:=[x]$
$a=b=1, c=0 ?$		

An execution result is explained by alternating threads

$[\mathrm{x}]=[\mathrm{y}]=0$		
$\square[x]:=1$	$\mathrm{a}:=[\mathrm{x}]$	$\mathrm{b}:=[\mathrm{y}]$
	[y] := 1	$\mathrm{c}:=[\mathrm{x}]$
$\mathrm{a}=\mathrm{b}=1, \mathrm{c}=0$?		

An execution result is explained by alternating threads

An execution result is explained by alternating threads

$$
\begin{array}{|c|c|c}
\hline & {[x]=[y]=0} \\
\longmapsto[x]:=1 & a:=[x] & b:=[y] \\
\square & {[y]:=1} & c:=[x] \\
& a=b=1, c=0 ?
\end{array}
$$

An execution result is explained by alternating threads

An execution result is explained by alternating threads

An execution result is explained by alternating threads... usually

$[\mathrm{x}]=[\mathrm{y}]=0$		
$\square[\mathrm{x}]:=1$	$\mathrm{a}:=[\mathrm{x}]$	$\mathrm{b}:=[\mathrm{y}]$
$\square[y]:=1 \square c:=[x]$		
$\mathrm{a}=\mathrm{b}=1, \mathrm{c}=0$		

C++ allows it due to a (non-atomic) data race

$[x]=[y]=0$		
$[x]:=1$	$a:=[x]$	$b:=[y]$
	$[y]:=1$	$c:=[x]$
$a=b=1, c=0$		

C++ allows it due to a (non-atomic) data race

\[

\]

C++ allows it due to a (non-atomic) data race

Non-atomic accesses

$[x]=[y]=0$		
$[x]:=1$	$a:=[x]$	$b:=[y]$
	$[y]:=1$	$c:=[x]$
$a=b=1, c=0$		

C++ allows it due to a (non-atomic) data race

Non-atomic accesses

$[x]=[y]=0$		
$[x]:=1$	$a:=[x]$	$b:=[y]$
	$[y]:=1$	$c:=[x]$
$a=b=1, c=0$		

Standard for Programming Language C++, 6.8.2.1.20:
"Any such data race results in undefined behavior."

No races on atomics

\[

\]

No races on atomics

$\|c\| c\|c\|$		
$[x]=[y]=0$		
$[x]^{r \mid x}:=1$		
$a:=[x]^{r \mid x}$		

No races on atomics but the outcome is still allowed

\[

\]

C++ memory model

$[x]=[y]=0$		
$[x]^{I x}:=1$	$a:=[x]^{1 / x}$	$b:=[y]^{r \mid x}$
	$[y]^{r \mid x}:=1$	$c:=[x]^{r \mid x}$

C++ memory model

C++ memory model is weak

$$
=\{\ldots,(a=b=c=1), \ldots(a=b=1, c=0), \ldots\}
$$

C++ memory model is weak as it allows optimizations

$$
=\{\ldots,(a=b=c=1), \ldots(a=b=1, c=0), \ldots\}
$$

C++ memory model is weak as it allows optimizations

$$
=\{\ldots,(a=b=c=1), \ldots(a=b=1, c=0), \ldots\}
$$

C++ memory model is weak as it allows optimizations

$$
=\{\ldots,(a=b=c=1), \ldots(a=b=1, c=0), \ldots\}
$$

Weak behavior can be controlled with access modes

$$
\begin{array}{cc}
{[x]=[y]=0} \\
\hline[x]^{s c}:=1 & a:=[x]^{s c} \\
\hline & {[y]^{r x}:=1} \\
\hline & c:=[y]^{1 / x} \\
\hline & c]^{s c}
\end{array}
$$

Weak behavior can be controlled with access modes

Weak behavior can be controlled with access modes but the effect is not obvious

POWER

C++ solution: strengthen access mode everywhere

\[

\]

OCaml MM: reasonable rules for racy programs

$$
\begin{array}{cc}
{[x]=[y]=0} \\
{[x]^{\mathrm{at}}:=1} & \mathrm{a}:=[\mathrm{x}]^{\mathrm{at}} \\
& \mathrm{~b}:=[\mathrm{y}]^{\mathrm{na}} \\
& {[\mathrm{y}]^{\mathrm{na}}:=1} \\
\mathrm{c}:=[\mathrm{x}]^{\mathrm{at}}
\end{array}
$$

OCaml MM: reasonable rules for racy programs

OCaml MM guarantees should be implemented

$[x]=[y]=0$		
$[x]^{\text {c }}:=1$	$\mathrm{a}:=[\mathrm{x}]^{\text {c }}$	$\mathrm{b}:=[y]^{1 / x}$
	[y] $]^{1 / x}:=1$	$\mathrm{c}:=[\mathrm{x}]^{\text {cc }}$
$\mathrm{a}=\mathrm{b}=1, \mathrm{c}=0$		

OCaml MM guarantees should be implemented

[compile(Prog)] $]_{\text {cPu }}$

OCaml MM guarantees should be implemented by providing a correct compilation scheme

$[\text { Prog] }]_{\text {oCaml mм }}$

We've proved compilation correctness from OCaml MM to Power

We've proved compilation correctness from OCaml MM to Power

We've proved compilation correctness from OCaml MM to Power using IMM

Another execution representation is needed

$[x]=[y]=0$		
$[x]:=1$	$a:=[x]$	$b:=[y]$
	$[y]:=1$	$c:=[x]$
$a=b=1, c=0$		

Consider the execution as a graph

$$
\begin{aligned}
& {[x]=[y]=0} \\
& \begin{array}{c|c|c}
{[x]^{\text {at }}:=1} & \mathrm{a}:=[\mathrm{x}]^{\mathrm{at}} & \mathrm{~b}:=[\mathrm{y}]^{\mathrm{na}} \\
& {[\mathrm{y}]^{\mathrm{na}}:=1} & \mathrm{c}:=[\mathrm{x}]^{\mathrm{at}}
\end{array} \\
& \mathrm{a}=\mathrm{b}=1, \mathrm{c}=0
\end{aligned}
$$

A permission of execution is determined by its graph

$$
\begin{aligned}
& \mathrm{R}^{\mathrm{at}}(x, 1) \quad \mathrm{R}^{\mathrm{na}}(y, 1) \\
& {[x]=[y]=0} \\
& \begin{array}{l|l|l}
{[x]^{\mathrm{ta}}:=1} & \mathrm{a}:=[\mathrm{x}]^{\mathrm{at}} & \mathrm{~b}:=[\mathrm{y}]^{\mathrm{na}} \\
& {[\mathrm{y}]^{\mathrm{n}}:=1} & \mathrm{c}:=[\mathrm{x}]^{\mathrm{at}}
\end{array} \\
& \mathrm{~W}^{\mathrm{at}}(x, 1) \quad \mathrm{W}^{\mathrm{na}}(y, 1) \quad \mathrm{R}^{\mathrm{at}}(x, 0)
\end{aligned}
$$

A permission of execution is determined by its graph

$$
[x]=[y]=0
$$

$$
\begin{array}{l|c|c}
{[\mathrm{x}]^{\mathrm{at}}:=1} & \mathrm{a}:=[\mathrm{x}]^{\mathrm{at}} & \mathrm{~b}:=[\mathrm{y}]^{\mathrm{na}} \\
& {[\mathrm{y}]^{\mathrm{na}}:=1} & \mathrm{c}:=[\mathrm{x}]^{\mathrm{at}}
\end{array}
$$

OCaml MM: $a=b=1, c=0$

OMM: no cycles made of po, rf and rlb

Compilation correctness in terms of graphs

[compile(Prog)] $]_{\text {мм }}$
[Prog] $]_{\text {ocam } / \text { MM }}$

Compilation correctness in terms of graphs

The identity compilation scheme won't work

compile(Prog) $=[n a \rightarrow r l x$, at $\rightarrow \mathrm{sc}]$ Prog

The identity compilation scheme won't work

compile $($ Prog $)=[n a \rightarrow r l x$, at $\rightarrow \mathrm{sc}]$ Prog

\[

\]

The identity compilation scheme won't work

compile $($ Prog $)=[n a \rightarrow r l x$, at \rightarrow sc]Prog

$$
[x]=[y]=0
$$

$[x]^{s c}:=1$	$\mathrm{a}:=[\mathrm{x}]^{\mathrm{sc}}$	$\mathrm{b}:=[\mathrm{y}]^{\mathrm{rlx}}$
	$[\mathrm{y}]^{1 \mathrm{l}}:=1$	$\mathrm{c}:=[\mathrm{x}]^{\mathrm{sc}}$

The identity compilation scheme won't work

compile $($ Prog $)=[\mathrm{na} \rightarrow \mathrm{rlx}$, at $\rightarrow \mathrm{sc}]$ Prog

$$
[x]=[y]=0
$$

$[x]^{s c}:=1$	$\mathrm{a}:=[\mathrm{x}]^{\mathrm{sc}}$	$\mathrm{b}:=[\mathrm{y}]^{\mathrm{r} \mid x}$
	$[\mathrm{y}]^{r \mathrm{x}}:=1$	$\mathrm{c}:=[\mathrm{x}]^{\mathrm{sc}}$

$$
a=b=1, c=0
$$

IMM: can have a cycle made of po, rf and rlb

The identity compilation scheme won't work

Graphs $_{\text {ocamı мм }}$ (Prog)
Graphs $_{\text {Iмм }}$ (compile(Prog))

Observed writes should remain so

Observed writes should remain so

Observed writes should remain so

Observed writes should remain so
= graph should have no cycles with rb

"Release" known writes and "acquire" them next

Implemented with release and acquire fences

Implemented with release and acquire fences

compile $($ Prog $)=[n a \rightarrow r l x$, at \rightarrow sc $]$ Prog + Fences $^{\text {rel }}+$ Fences $^{\text {acq }}$

Implemented with release and acquire fences

compile(Prog) $=[$ na $\rightarrow \mathrm{rlx}$, at $\rightarrow \mathrm{sc}]$ Prog + Fences $^{\text {rel }}+$ Fences $^{\text {aca }}$

$[x]=[y]=0$		
$[x]^{s c}:=1$	$a:=[x]^{s c}$	$b:=[y]^{I x}$
	fence $^{\text {rel }}$	fence ${ }^{\text {aca }}$
	$[y]^{r \mid x}:=1$	$c:=[x]^{s c}$

Implemented with release and acquire fences

compile(Prog) $=[$ na $\rightarrow \mathrm{rlx}$, at $\rightarrow \mathrm{sc}]$ Prog + Fences $^{\text {rel }}+$ Fences $^{\text {acq }}$

$[x]=[y]=0$				
$[x]^{s c}:=1$	$\mathrm{a}:=[\mathrm{x}]^{\text {cc }}$	$\mathrm{b}:=[\mathrm{y}]^{1 / x}$		
	fence ${ }^{\text {rel }}$	fence ${ }^{\text {aca }}$		
	[y] ${ }^{1 / x}:=1$	$\mathrm{c}:=[\mathrm{x}]^{\text {sc }}$		

Implemented with release and acquire fences

compile $($ Prog $)=[n a \rightarrow r l x$, at $\rightarrow s c]$ Prog + Fences $^{\text {rel }}+$ Fences $^{\text {aca }}$

$[x]=[y]=0$		
$[x]^{s c}:=1$	$a:=[x]^{s c}$	$b:=[y]^{r \mid x}$
	fence $^{\text {rel }}$	fence $^{\text {aca }}$
	$[y]^{r \mid x}:=1$	$c:=[x]^{\text {sc }}$
$a=b=1, c=0$		

IMM: can have a cycle made of po, rf and rbb if there is rf without sc and fences

An IMM-inconsistent behavior is now prohibited

Graphs $_{\text {oCamı мм }}$ (Prog)
Graphs $_{\text {Імм }}$ (compile(Prog))

The resulting scheme prohibits unwanted behaviors

OCaml MM	IMM
$\mathrm{r}:=[\mathrm{x}]^{\text {na }}$	$\mathrm{r}:=[\mathrm{x}]^{\text {rlx }}$
$[\mathrm{x}]^{\text {na }}:=\mathrm{v}$	fence $^{\text {acqrel }} ;[\mathrm{x}]^{\text {rlx }}:=\mathrm{v}$
$\mathrm{r}:=[\mathrm{x}]^{\text {at }}$	fence $^{\text {acq }} ; \mathrm{r}:=[\mathrm{x}]^{\mathrm{sc}}$
$[\mathrm{x}]^{\text {at }}:=\mathrm{v}$	fence $^{\text {acq }} ;$ exchange $^{\mathrm{sc}}(\mathrm{x}, \mathrm{v})$

Takeaway

- Compilation scheme from OCaml MM to IMM
- Proved to be correct
- Formalized in Coq

Machine-verified
compilation scheme from
OCaml MM to Power

https://github.com/weakmemory/imm

