
Compilation of OCaml memory model to Power

Egor Namakonov, Anton Podkopaev



An execution result is explained by alternating 
threads… usually

[x] = [y] = 0

[x] := 1 a := [x] b := [y]

[y] := 1 c := [x]

2



An execution result is explained by alternating 
threads… usually

[x] = [y] = 0

[x] := 1 a := [x] b := [y]

[y] := 1 c := [x]

a = b = c = 1 ?

2



An execution result is explained by alternating 
threads… usually

[x] = [y] = 0

[x] := 1 a := [x] b := [y]

[y] := 1 c := [x]

a = b = c = 1 ?

2



An execution result is explained by alternating 
threads… usually

[x] = [y] = 0

[x] := 1 a := [x] b := [y]

[y] := 1 c := [x]

a = b = c = 1 ?

2



An execution result is explained by alternating 
threads… usually

[x] = [y] = 0

[x] := 1 a := [x] b := [y]

[y] := 1 c := [x]

a = b = c = 1 ?

2



An execution result is explained by alternating 
threads… usually

[x] = [y] = 0

[x] := 1 a := [x] b := [y]

[y] := 1 c := [x]

a = b = c = 1 ?

2



An execution result is explained by alternating 
threads… usually

[x] = [y] = 0

[x] := 1 a := [x] b := [y]

[y] := 1 c := [x]

a = b = c = 1 ?

2



An execution result is explained by alternating 
threads… usually

[x] = [y] = 0

[x] := 1 a := [x] b := [y]

[y] := 1 c := [x]

a = b = c = 1 ?

2

a = b = c = 1



An execution result is explained by alternating 
threads… usually

[x] = [y] = 0

[x] := 1 a := [x] b := [y]

[y] := 1 c := [x]

3

a = b = 1, c = 0 ?



An execution result is explained by alternating 
threads… usually

[x] = [y] = 0

[x] := 1 a := [x] b := [y]

[y] := 1 c := [x]

3

a = b = 1, c = 0 ?



An execution result is explained by alternating 
threads… usually

[x] = [y] = 0

[x] := 1 a := [x] b := [y]

[y] := 1 c := [x]

3

a = b = 1, c = 0 ?



An execution result is explained by alternating 
threads… usually

[x] = [y] = 0

[x] := 1 a := [x] b := [y]

[y] := 1 c := [x]

3

a = b = 1, c = 0 ?



An execution result is explained by alternating 
threads… usually

[x] = [y] = 0

[x] := 1 a := [x] b := [y]

[y] := 1 c := [x]

3

a = b = 1, c = 0 ?



An execution result is explained by alternating 
threads… usually

[x] = [y] = 0

[x] := 1 a := [x] b := [y]

[y] := 1 c := [x]

3

a = b = 1, c = 0 ?



An execution result is explained by alternating 
threads… usually

[x] = [y] = 0

[x] := 1 a := [x] b := [y]

[y] := 1 c := [x]

3

a = b = 1, c = 0 ?a = b = 1, c = 0



C++ allows it due to a (non-atomic) data race

[x] = [y] = 0

[x] := 1 a := [x] b := [y]

[y] := 1 c := [x]

4

a = b = 1, c = 0



C++ allows it due to a (non-atomic) data race

[x] = [y] = 0

[x] := 1 a := [x] b := [y]

[y] := 1 c := [x]

4

a = b = 1, c = 0



C++ allows it due to a (non-atomic) data race

[x] = [y] = 0

[x] := 1 a := [x] b := [y]

[y] := 1 c := [x]

Non-atomic
accesses
Non-atomic
accesses

4

a = b = 1, c = 0



C++ allows it due to a (non-atomic) data race

[x] = [y] = 0

[x] := 1 a := [x] b := [y]

[y] := 1 c := [x]

Standard for Programming Language C++, 6.8.2.1.20: 
“Any such data race results in undefined behavior.”

Non-atomic
accesses
Non-atomic
accesses

4

a = b = 1, c = 0



No races on atomics but the outcome is still allowed

[x] = [y] = 0

[x]rlx := 1 a := [x]rlx b := [y]rlx

[y]rlx := 1 c := [x]rlx

5

a = b = 1, c = 0 ?



No races on atomics but the outcome is still allowed

[x] = [y] = 0

[x]rlx := 1 a := [x]rlx b := [y]rlx

[y]rlx := 1 c := [x]rlx

5

a = b = 1, c = 0 ?



No races on atomics but the outcome is still allowed

[x] = [y] = 0

[x]rlx := 1 a := [x]rlx b := [y]rlx

[y]rlx := 1 c := [x]rlx

5

a = b = 1, c = 0 ?a = b = 1, c = 0



C++ memory model

[x] = [y] = 0

[x]rlx := 1 a := [x]rlx b := [y]rlx

[y]rlx := 1 c := [x]rlx

6



C++ memory model

= { …, (a=b=c=1), … (a=b=1, c=0), … }

[x] = [y] = 0

[x]rlx := 1 a := [x]rlx b := [y]rlx

[y]rlx := 1 c := [x]rlx

6



= { …, (a=b=c=1), … (a=b=1, c=0), … }

[x] = [y] = 0

[x]rlx := 1 a := [x]rlx b := [y]rlx

[y]rlx := 1 c := [x]rlx

C++ memory model is weak as it allows optimizations

6



= { …, (a=b=c=1), … (a=b=1, c=0), … }

[x] = [y] = 0

[x]rlx := 1 a := [x]rlx b := [y]rlx

[y]rlx := 1 c := [x]rlx

C++ memory model is weak as it allows optimizations

6



= { …, (a=b=c=1), … (a=b=1, c=0), … }

[x] = [y] = 0

[x]rlx := 1 a := [x]rlx b := [y]rlx

[y]rlx := 1 c := [x]rlx

C++ memory model is weak as it allows optimizations

6



= { …, (a=b=c=1), … (a=b=1, c=0), … }

[x] = [y] = 0

[x]rlx := 1 a := [x]rlx b := [y]rlx

[y]rlx := 1 c := [x]rlx

C++ memory model is weak as it allows optimizations

6



Weak behavior can be controlled with access modes
but the effect is not obvious

[x] = [y] = 0

[x]sc := 1 a := [x]sc b := [y]rlx

[y]rlx := 1 c := [x]sc

7



Weak behavior can be controlled with access modes
but the effect is not obvious

[x] = [y] = 0

[x]sc := 1 a := [x]sc b := [y]rlx

[y]rlx := 1 c := [x]sc

7



Weak behavior can be controlled with access modes
but the effect is not obvious

[x] = [y] = 0

[x]sc := 1 a := [x]sc b := [y]rlx

[y]rlx := 1 c := [x]sc

a = b = 1, c = 0 

7



C++ solution: strengthen access mode everywhere

[x] = [y] = 0

[x]sc := 1 a := [x]sc b := [y]sc

[y]sc := 1 c := [x]sc

a = b = 1, c = 0 

8



OCaml MM: reasonable rules for racy programs

[x] = [y] = 0

[x]at := 1 a := [x]at b := [y]na

[y]na := 1 c := [x]at

9



OCaml MM: reasonable rules for racy programs

[x] = [y] = 0

[x]at := 1 a := [x]at b := [y]na

[y]na := 1 c := [x]at

9



OCaml MM: reasonable rules for racy programs

[x] = [y] = 0

[x]at := 1 a := [x]at b := [y]na

[y]na := 1 c := [x]at

9



OCaml MM: reasonable rules for racy programs

[x] = [y] = 0

[x]at := 1 a := [x]at b := [y]na

[y]na := 1 c := [x]at

9



OCaml MM: reasonable rules for racy programs

[x] = [y] = 0

[x]at := 1 a := [x]at b := [y]na

[y]na := 1 c := [x]at

Local data race 
freedom: 
result of reading x 
doesn’t depend on 
the race on y

9



OCaml MM: reasonable rules for racy programs

[x] = [y] = 0

[x]at := 1 a := [x]at b := [y]na

[y]na := 1 c := [x]at

Local data race 
freedom: 
result of reading x 
doesn’t depend on 
the race on y

9



OCaml MM: reasonable rules for racy programs

[x] = [y] = 0

[x]at := 1 a := [x]at b := [y]na

[y]na := 1 c := [x]at

Local data race 
freedom: 
result of reading x 
doesn’t depend on 
the race on y

9



OCaml MM: reasonable rules for racy programs

[x] = [y] = 0

[x]at := 1 a := [x]at b := [y]na

[y]na := 1 c := [x]at

Local data race 
freedom: 
result of reading x 
doesn’t depend on 
the race on y

9



OCaml MM: reasonable rules for racy programs

[x] = [y] = 0

[x]at := 1 a := [x]at b := [y]na

[y]na := 1 c := [x]at

Local data race 
freedom: 
result of reading x 
doesn’t depend on 
the race on y

a = b = 1, c = 0 

9



OCaml MM guarantees should be implemented

[x] = [y] = 0

[x]sc := 1 a := [x]sc b := [y]rlx

[y]rlx := 1 c := [x]sc

a = b = 1, c = 0 

10



OCaml MM guarantees should be implemented
by providing a correct compilation scheme

11

[compile(Prog)]CPU



OCaml MM guarantees should be implemented
by providing a correct compilation scheme

11

[compile(Prog)]CPU [Prog]OCaml MM



We’ve proved compilation correctness from OCaml 
MM to Power using IMM

OCaml MM

x86

ARM

12



We’ve proved compilation correctness from OCaml 
MM to Power using IMM

OCaml MM

x86

Power

ARM

12



We’ve proved compilation correctness from OCaml 
MM to Power using IMM

OCaml MM

x86

Power

ARM

12

IMM



Another execution representation is needed

[x] = [y] = 0

[x] := 1 a := [x] b := [y]

[y] := 1 c := [x]

a = b = 1, c = 0

13



Consider the execution as a graph

[x] = [y] = 0

[x]at := 1 a := [x]at b := [y]na

[y]na := 1 c := [x]at

a = b = 1, c = 0

14



A permission of execution is determined by its graph

[x] = [y] = 0

[x]at := 1 a := [x]at b := [y]na

[y]na := 1 c := [x]at

15



A permission of execution is determined by its graph

[x] = [y] = 0

[x]at := 1 a := [x]at b := [y]na

[y]na := 1 c := [x]at

OMM: no cycles made of po, rf and rb

OCaml MM: a = b = 1, c = 0 

15



Compilation correctness in terms of graphs

[compile(Prog)]IMM

[Prog]OCaml MM

16



Compilation correctness in terms of graphs

[compile(Prog)]IMM

[Prog]OCaml MM

GraphsIMM(compile(Prog))

GraphsOCaml MM(Prog)

16



The identity compilation scheme won’t work

compile(Prog) = [na→rlx, at→sc]Prog

17



The identity compilation scheme won’t work

compile(Prog) = [na→rlx, at→sc]Prog

[x] = [y] = 0

[x]sc := 1 a := [x]sc b := [y]rlx

[y]rlx := 1 c := [x]sc

17



The identity compilation scheme won’t work

compile(Prog) = [na→rlx, at→sc]Prog

[x] = [y] = 0

[x]sc := 1 a := [x]sc b := [y]rlx

[y]rlx := 1 c := [x]sc

17



The identity compilation scheme won’t work

compile(Prog) = [na→rlx, at→sc]Prog

[x] = [y] = 0

[x]sc := 1 a := [x]sc b := [y]rlx

[y]rlx := 1 c := [x]sc

a = b = 1, c = 0 

17
IMM: can have a cycle made of po, rf and rb



The identity compilation scheme won’t work

GraphsIMM(compile(Prog))
GraphsOCaml MM(Prog)

18



Observed writes should remain so
= graph should have no cycles with rb

19



Observed writes should remain so
= graph should have no cycles with rb

x = 1 ✓

19



Observed writes should remain so
= graph should have no cycles with rb

x = 1 ✓

x = 0 ❌

19



Observed writes should remain so
= graph should have no cycles with rb

x = 1 ✓

x = 0 ❌

19



“Release” known writes and “acquire” them next

20



“Release” known writes and “acquire” them next

x = 1 ✓

20



“Release” known writes and “acquire” them next

x := 1 ✓x = 1 ✓

20



“Release” known writes and “acquire” them next

x := 1 ✓x = 1 ✓

x = 1 ✓

20



Implemented with release and acquire fences

21



Implemented with release and acquire fences

compile(Prog) = [na→rlx, at→sc]Prog + Fencesrel + Fencesacq

21



Implemented with release and acquire fences

[x] = [y] = 0

[x]sc := 1 a := [x]sc b := [y]rlx

fencerel fenceacq

[y]rlx := 1 c := [x]sc

compile(Prog) = [na→rlx, at→sc]Prog + Fencesrel + Fencesacq

21



Implemented with release and acquire fences

[x] = [y] = 0

[x]sc := 1 a := [x]sc b := [y]rlx

fencerel fenceacq

[y]rlx := 1 c := [x]sc

compile(Prog) = [na→rlx, at→sc]Prog + Fencesrel + Fencesacq

21



Implemented with release and acquire fences

[x] = [y] = 0

[x]sc := 1 a := [x]sc b := [y]rlx

fencerel fenceacq

[y]rlx := 1 c := [x]sc

compile(Prog) = [na→rlx, at→sc]Prog + Fencesrel + Fencesacq

a = b = 1, c = 0 

21

IMM: can have a cycle made of po, rf and rb
if there is rf without sc and fences



An IMM-inconsistent behavior is now prohibited

GraphsIMM(compile(Prog))
GraphsOCaml MM(Prog)

22



The resulting scheme prohibits unwanted behaviors

23



Takeaway

● Compilation scheme
from OCaml MM to IMM

● Proved to be correct
● Formalized in Coq

Machine-verified 
compilation scheme from 
OCaml MM to Power

https://github.com/weakmemory/imm

24


