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C++ allows it due to a (non-atomic) data race

[x] = [y] = 0

[x] := 1 a := [x] b := [y]

[y] := 1 c := [x]

Standard for Programming Language C++, 6.8.2.1.20: 
“Any such data race results in undefined behavior.”

Non-atomic
accesses
Non-atomic
accesses
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No races on atomics but the outcome is still allowed
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C++ solution: strengthen access mode everywhere

[x] = [y] = 0

[x]sc := 1 a := [x]sc b := [y]sc

[y]sc := 1 c := [x]sc

a = b = 1, c = 0 
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OCaml MM guarantees should be implemented
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We’ve proved compilation correctness from OCaml 
MM to Power using IMM
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Another execution representation is needed

[x] = [y] = 0

[x] := 1 a := [x] b := [y]

[y] := 1 c := [x]

a = b = 1, c = 0
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Consider the execution as a graph

[x] = [y] = 0

[x]at := 1 a := [x]at b := [y]na

[y]na := 1 c := [x]at

a = b = 1, c = 0
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A permission of execution is determined by its graph

[x] = [y] = 0

[x]at := 1 a := [x]at b := [y]na

[y]na := 1 c := [x]at

OMM: no cycles made of po, rf and rb

OCaml MM: a = b = 1, c = 0 
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Compilation correctness in terms of graphs

[compile(Prog)]IMM

[Prog]OCaml MM
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Compilation correctness in terms of graphs
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GraphsIMM(compile(Prog))

GraphsOCaml MM(Prog)
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IMM: can have a cycle made of po, rf and rb
if there is rf without sc and fences



An IMM-inconsistent behavior is now prohibited

GraphsIMM(compile(Prog))
GraphsOCaml MM(Prog)
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The resulting scheme prohibits unwanted behaviors
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Takeaway

● Compilation scheme
from OCaml MM to IMM

● Proved to be correct
● Formalized in Coq

Machine-verified 
compilation scheme from 
OCaml MM to Power

https://github.com/weakmemory/imm
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