From North Stars to Clever Insights

On using grand challenges to drive new techniques in automated theorem proving

Nikolaj Bjørner
Microsoft Research

Aim of talk

Describe a set of applications that use Satisfiability Modulo Theories, SMT

Describe model-based techniques, an insight driving SMT architecture

Satisfiability Modulo Theories (SMT)

Is formula φ satisfiable modulo theory T ?

SMT solvers have specialized algorithms for T

Satisfiability Modulo Theories (SMT)

$$
x+2=y \Rightarrow f \text { select }(\text { store }(a, x, 3), y-2))=f(y-x+1)
$$

Array Theory

Arithmetic
Uninterpreted Functions

$$
\begin{gathered}
\operatorname{select}(\operatorname{store}(a, i, v), i)=v \\
i \neq j \Rightarrow \operatorname{select}(\operatorname{store}(a, i, v), j)=\operatorname{select}(a, j)
\end{gathered}
$$

Z3 - An Efficient SMT Solver

What it is for:

- Program analysis tools ultimately rely on solving logical constraints
"The calculus of computation"
- A need to lower barrier of entry for program analysis tools

What it is:

- General purpose theorem prover
- Specialized algorithms for important workloads
- Open Source on GitHub

Some Microsoft Uses of 235

also: Dynamics Tax tool, Visual Studio C++ compiler, Blockchain, Static Driver Verifier, Pex

- Verified C compiler for the Microsoft Hyper-Visor 2008-2012
- Verified TLS protocols, Crypto Libraries, Parsers. Project Everest 2016-2022

\$ref_cnt(old(\$s), \#p) == \$ref_cnt(\$s, \#p) \&\& \$ite.bool(\$set_in(\#p,
\$owns(old(\$s), owner)),
\$ite.bool(\$set_in(\#p, owns), \$st_eq(old(\$s), \$s, \#p),
\$wrapped(\$s, \#p, \$typ(\#p)) \&\&
\$timestamp_is_now(\$s, \#p)),
\$ite. ool(\$set_in(\#p, owns),
$\# p)==$ owner $\& \& \$ c l o s e d(\$ s$,
Boogie

Several Significant Systems:

- Frama-C,
- VeriFast, Vyper,
- SeaHorn,
- K, Key

Dynamic Symbolic Execution for finding million-dollar bugs

HyperScale Network Verification

Connectivity Restrictions

Forwarding Policies

Host Firewalls

Customer facing Network Security Groups

Major refactoring of
Microsoft's Edge ACL
$\longleftarrow \quad$ Live monitoring of drift

Pre-check before deployment

Design validation

Local Validation: The Scalability Trick

Root Cause Complexity

- $\mathrm{O}\left(\mathrm{N}^{3}\right)$
- Billions of pairs of ToRs
- Engineering challenge: Synchronized snapshot of FIBs

Key Insight

Exploit Azure network's regular structure

- Each router has a fixed role for a set of addresses
- Enough to verify role is enforced on each router

Decompose into local contracts
Parallelize and scale

SMT-based Algorithm

```
VRF name: default
Codes: C - connected, S - static, K - kernel,
    O- OSPF, IA - OSPF inter area, ...
    B E - eBGP, ...
    ...
Gateway of last resort:
B E 0.0.0.0/0 [200/0] via 30.10.192.12, ...
    via ...
    via ...
B E 10.3.129.224/28 [200/0] via 10.10.192.12, ...
```

```
Define \(P, P_{i}(0 \leq i \leq n)\), and \(P_{n}\) :
```

Define $P, P_{i}(0 \leq i \leq n)$, and P_{n} :
$P(\vec{x})=P_{1}(\vec{x})$
$P(\vec{x})=P_{1}(\vec{x})$
$P_{i}(\vec{x})=$ if r_{i}.prefix (\vec{x}) then r_{i}.nexthops else $P_{i+1}(\vec{x})$
$P_{i}(\vec{x})=$ if r_{i}.prefix (\vec{x}) then r_{i}.nexthops else $P_{i+1}(\vec{x})$
$P_{i}(\vec{x})=$ drop
$P_{i}(\vec{x})=$ drop
r r13.prefix (\vec{x})=10.3.129.224\leq\vec{x}\leq10.3.129.140
r
Check C.range $(\vec{x}) \wedge P \wedge \neg$ C. nexthops

```

\section*{ACL Verification Engine}
```

remark Isolating private addresses
deny ip 0.0.0.0/32 any
deny ip 10.0.0.0/8 any
deny ip 172.16.0.0/12 any
deny ip 192.0.2.0/24 any
remark Anti spoofing ACLs
deny ip 128.30.0.0/15 any
deny ip 171.64.0.0/15 any
remark permits for IPs without
port and protocol blocks
permit ip any 171.64.64.0/20
remark standard port and protocol
deny tcp any any eq }44
deny udp any any eq 445
deny tcp any any eq }59
deny udp any any eq 593
deny }53\mathrm{ any any
deny 55 any any
remark permits for IPs with
port and protocol blocks
permit ip any 128.30.0.0/15
permit ip any 171.64.0.0/15

```

\title{
Imandra is a cloud-native automated reasoning engine.
}

\section*{Imandra's groundbreaking Al helps ensure the algorithms we rely on are safe, explainable and fair.}

\section*{TRY IMANDRA ONLINE}

Verifying ReasonReact component logic
- ReasonML \& Imandra

4 September 2018

\section*{Quantum: Reversible pebbling game}

Example: find a pebbling strategy using 6 pebbles.

pebbling configurations
\[
\begin{aligned}
& P_{1}=\{\phi\}, \\
& P_{2}=\{a\}, \\
& P_{3}=\{a, b\}, \\
& P_{4}=\{a, b, c\}, \\
& P_{5}=\{a, b, c, d\}, \\
& P_{6}=\{a, b, c, d, e\}, \\
& P_{7}=\{a, b, c, d, e, f\}, \\
& P_{8}=\{a, b, c, e, f\}, \\
& P_{9}=\{a, b, e, f\}, \\
& P_{10}=\{a, e, f\}, \\
& P_{m}=P_{11}=\{e, f\}
\end{aligned}
\]
space-time trade-off

reversible circuit


\section*{Axiomatic Economics}

Models of economics formulated using Non-linear Real Arithmetic


Casey Mulligan, University of Chicago, School of Economics uses Mathematica, Redlog, Z3

\section*{Symbolic Analysis Engines}

\(\mu Z\) : Datalog
Generalized PDR
Existential Reals
Model Constructing SAT
CutSAT: Linear Integer Formulas Quantified Bit-Vectors

Pax RIAM SAGE
nin TERMINATOR
c
Coy

> SLS, floats
> vZ: Opt+MaxSMT

T


Model-based techniques in Automated Theorem Proving

\section*{Saturation x Search}

\author{
Proof-finding \\ Model-finding
}


\section*{Two procedures}
\begin{tabular}{|c|c|}
\hline Resolution & DPLL \\
\hline Proof-finder & Model-finder \\
\hline Saturation & Search \\
\hline
\end{tabular}

\title{
Saturation: successful instances
}

\author{
Polynomial time procedures
}

\author{
Gaussian Elimination
}

Congruence Closure

\title{
Search: successful instances
}

\section*{Decomposable Search Spaces}

\author{
The "Cube" in "Cube \& Conquer"
}

Some instances of model finding

\section*{CDCL: Conflict Driven Clause Learning}


\section*{Linear Arithmetic}
\begin{tabular}{|c|c|}
\hline Fourier-Motzkin & Simplex \\
\hline Proof-finder & Model-finder \\
\hline Saturation & Search \\
\hline
\end{tabular}

\section*{Linear Arithmetic}

\section*{Saturation:}
\[
\frac{a \leq x, b \leq x, c \leq x, x \leq d, x \leq e}{a \leq d, a \leq e, b \leq d, b \leq e, c \leq d, c \leq d}
\]

Model Finding:
\[
\frac{a \leq x, b \leq x, c \leq x, x \leq d, x \leq e}{a \leq d, b \leq d, c \leq d, d \leq e \quad a \leq e, b \leq e, c \leq e, e \leq d}
\]

For models \(\mathrm{d}=2, \mathrm{e}=3\)

\section*{Other examples (for linear arithmetic)}

\author{
Generalizing DPLL to richer logics \\ [McMillan 2009]
}

Fourier-Motzkin
Conflict Resolution
[Korovin et al 2009]

\section*{Unate Lemmas}
[Coton 2009]

\section*{Little engines of proof}

\section*{Z3 Architecture}

\section*{SMT = SAT + Theories}
- SAT Solver handles search
- Theory Solvers handle theory reasoning
- Integration through equality sharing


\section*{Model-based theory combination}
- Each theory constructs a candidate model
- Each model implies some equalities
- Propagate equalities implied by candidate model
- Use backtracking if theories cannot reconcile equalities


\section*{Model-based Quantifier Instantiation}

Assume we are given \(\psi \wedge \forall x \varphi[x]\), then use model for \(\psi\) as starting point for search of instantiations of \(\forall x \varphi[x]\)
```

(declare-fun f (Int) Int)
(declare-const a Int)
(declare-const b Int)
(assert (forall ((x Int)) (> (f x) (f a))))
(assert (> (f b) (f a)))
(check-sat)

```
\(\psi: \quad f(b)>f(a)\)
\(\varphi[x]: f(x)>f(a)\)
Candidate model:
\[
a:=0, b:=1, f(x):=x=0 ? 1: 2
\]

Model check:
\[
\text { is } \underbrace{f(x)}_{x=0 ? 1: 2} \leq \underbrace{f(a)}_{=1} \text { SAT? }
\]

Yes, set \(x=a=0\)

\section*{Model-based Quantifier Instantiation}

Assume we are given \(\psi \wedge \forall x \varphi[x]\), then use model for \(\psi\) as starting point for search of instantiations of \(\forall x \varphi[x]\)
```

s.add(\psi)
while True:
if unsat == s.check():
return unsat
M = s.model()
checker = Solver()
checker.add(\neg\mp@subsup{\varphi}{}{M}[x])
if unsat == checker.check()
return sat
M = checker.model()
find t, such that }x\not\int,\mp@subsup{t}{}{M}=\mp@subsup{x}{}{M}\mathrm{ .
s.add(\varphi[t])

```

\section*{Generalized, Efficient Array Decision Procedures}

Array store and read operations (a [i]), and
\[
\begin{aligned}
K(v)[i] & =v \\
\operatorname{map}_{f}\left(a_{1}, \ldots, a_{n}\right)[i] & =f\left(a_{1}[i], \ldots, a_{n}[i]\right)
\end{aligned}
\]

Rules such as:
\[
\begin{gathered}
\mathrm{idx} \frac{a \equiv \text { store }(b, i, v)}{a[i] \simeq v} \\
\Downarrow \frac{a \equiv \operatorname{store}(b, i, v), \quad w \equiv a^{\prime}[j], \quad a \sim a^{\prime}}{i \simeq j \vee a[j] \simeq b[j]} \\
\Uparrow \frac{a \equiv \operatorname{store}(b, i, v), \quad w \equiv b^{\prime}[j], \quad b \sim b^{\prime}}{i \simeq j \vee a[j] \simeq b[j]} \\
\operatorname{ext} \frac{a:(\sigma \Rightarrow \tau), \quad b:(\sigma \Rightarrow \tau)}{a \simeq b \vee a\left[k_{a, b}\right] \npreceq b\left[k_{a, b}\right]}
\end{gathered}
\]

Model-based filters for restricting the application of these rules while retaining completeness.

\title{
Polynomial Constraints
}

\author{
AKA
}

\section*{Existential Theory of the Reals}
\[
\begin{gathered}
x^{2}-4 x+y^{2}-y+8<1 \\
x y-2 x-2 y+4>1
\end{gathered}
\]

\section*{NLSAT}

Key ideas: Use partial solution to guide the search


\section*{MCSat}

\section*{Trail}

\section*{Search}
- Trail: values guessed for sub-terms
- Propagate values, derive consequences
- Conflict resolution: Detect, backjump, learn
- Forget, restart, indexing,...

```

$\mathrm{x}>0$ is "explained" by the clause $x+y+z>0 \wedge-x+y+z<0 \Rightarrow$

```
    \(x>0\)

\section*{Solving LIA* using approximations - models and interpolants}

\(F_{1}: y+2 x \geq 17 \wedge 6 x-y \leq 47\)
\(F_{2}: 5 x+2 y \geq 17 \wedge 3 x-y \leq 8 \wedge 2 x+3 y \leq 20\)
\(F_{1} \wedge F_{2}\) is UNSAT

\[
\begin{aligned}
& F_{2}^{*}: \exists x_{1}, y_{1} x_{2}, y_{2}, \ldots \\
& \quad F_{2}\left(x_{1}, y_{1}\right) \wedge F_{2}\left(x_{2}, y_{2}\right) \wedge \cdots \wedge F_{2}\left(x_{k}, y_{k}\right) \wedge \\
& \quad x=\sum x_{i} \wedge y=\sum y_{i}
\end{aligned}
\]
\(F_{1} \wedge F_{2}^{*}\) is SAT
[Levatich, B, Piskac, Shoham, to appear VMCAI 2020]

\section*{Solving LIA* using Approximations}

Claim: \(F_{2}^{*}\) can be expressed in LIA
Claim: \(F_{2}\) can be expressed as \(\overrightarrow{\boldsymbol{x}} \in \bigcup_{i} a_{i}+B_{i}^{*}\)
i.e., every LIA formula is a finite union of semi-linear sets.

Justification: \(F_{2}^{*}(\vec{x}):=\exists \boldsymbol{\mu} \lambda .\left(\vec{x}=\sum_{i} \mu_{i} a_{i}+\lambda_{i} B_{i}\right) \wedge \wedge_{i}\left(\mu_{i}=0 \rightarrow \lambda_{i}=0\right)\)

Brute force solver: express \(F_{2}^{*}\) using semi-linear sets, then use LIA solver

Catch: completely impractical

\section*{Solving LIA* using Approximations}

Establish under-approximation \(U^{*} \rightarrow F_{2}^{*}\) such that \(U^{*} \wedge F_{1}\) is SAT


Establish over-approximation \(F_{2}^{*} \rightarrow O^{*}\) such that \(O^{*} \wedge F_{1}\) is UNSAT

\section*{Under-approx \(U^{*} \rightarrow F_{2}^{*}\) such that \(U^{*} \wedge F_{1}\) is SAT}

Initially, \(U:=\varnothing, \quad U^{*}:=(x, y)=(0,0)\)
Maintain, \(U=U_{i} a_{i}+\lambda B_{i}\) under-approximates \(F_{2}\)
\[
\text { and set } U^{*}(\vec{x}):=\exists \boldsymbol{\mu} \lambda .\left(\vec{x}=\sum_{i} \mu_{i} a_{i}+\lambda_{i} B_{i}\right) \wedge \wedge_{i}\left(\mu_{i}=0 \rightarrow \lambda_{i}=0\right)
\]

Find \(x, y: U^{*}\left(x_{0}, y_{0}\right) \wedge F_{2}(x, y) \wedge \neg U^{*}\left(x_{0}+x, y_{0}+y\right)\)
Add \((x, y)\) to \(U\), reduce vectors using new element

Over-approx \(F_{2}^{*} \rightarrow O^{*}\) such that \(O^{*} \wedge F_{1}\) is UNSAT
\[
\begin{aligned}
& U_{0}:=\left\{(x, y) \mid U^{*}(x, y)\right\} \\
& U_{i+1}:=U_{i} \cup\left\{\left(x_{1}+x_{2}, y_{1}+y_{2}\right) \mid U_{i+1}\left(x_{1}, y_{1}\right) \wedge F_{2}\left(x_{2}, y_{2}\right)\right\} \\
& \quad B_{0}:=\left\{(x, y) \mid F_{1}(x, y)\right\}
\end{aligned}
\]


\section*{Over-approx \(F_{2}^{*} \rightarrow O^{*}\) such that \(O^{*} \wedge F_{1}\) is UNSAT}

Initially \(O^{*}:=\) true
Interpolate
\[
\begin{aligned}
U^{*}\left(x_{0}, y_{0}\right) \wedge F_{2}\left(x_{1}, y_{1}\right) \rightarrow & I\left(x_{0}+x_{1}, y_{0}+y_{1}\right), \\
& I(x, y) \rightarrow\left(F_{2}\left(x_{2}, y_{2}\right) \rightarrow \neg F_{1}\left(x_{2}+x, y_{2}+y\right)\right)
\end{aligned}
\]

Add conjunctions from \(I\) to \(O^{*}\) that are inductive, that is:
\[
O^{*}(x, y) \wedge F_{2}\left(x_{1}, y_{1}\right) \rightarrow O^{*}\left(x+x_{1}, y+y_{1}\right)
\]

\section*{Solving LIA* using Approximations}

Q:
Can we leverage duality fully?

We were only exploiting the duality in one direction:
Under-approximation \(U^{*}\) used to strengthen \(\mathrm{O}^{*}\)
But O* was not used to weaken U*

\section*{QSAT - Playing with Models and Cores}

Instantiated to theories
- Linear real arithmetic
- Linear integer arithmetic
- Algebraic datatypes
- Non-linear real arithmetic
- (Bit-vectors)

Q: What is a good approach to learn strategies?

Q: Mixing theories and beyond theories that admit QE?

\section*{QSAT - Playing with Models and Cores}

Two players
- \(\exists\) : \(\exists x_{1} \forall y_{2} \exists x_{3} \forall y_{4} F\),
- \(\forall: \forall x_{1} \exists y_{2} \forall x_{3} \exists y_{4} \neg F\)
\[
\begin{aligned}
& F_{1} \leftarrow F_{3} \leftarrow F \\
& F_{2} \leftarrow F_{4} \leftarrow \neg F
\end{aligned}
\]

\section*{State:}
- A model, M,
- for oponents solution
- A strategy, S,
- function declaring how opponent would assign its variables in response
- Example
- It is \(x_{3}{ }^{\prime}\) s turn
- \(\mathbf{M}\) says \(x_{1}=5, y_{2}=3\)
- \(\mathbf{S}\) says \(y_{4}=x_{3}+2\)

\section*{Summary}
- SMT solvers have come into quite wide-spread use in the past decade
- Thanks to a large span of applications and technical advances
- Many solving techniques exploit duality of model search and deduction
- Harnessing the interplay remains a throve of future opportunities
- Beyond model-based techniques:
- "Cubing": Establish problem decomposition
- "Strategies": Prune search space that is no more likely to produce solutions

\section*{Research Question: Guiding Search}

Problem: Tuned engines are prone to overfitting

State of art: Tune input parameters (using ML) and code back-off schemes

Opportunity: Use data-driven techniques to re-direct search

\section*{Learning cubes using DNNs}

Goal: Choose most important case split

Train DNN using unsat formulas:
- Log conflict clauses
- Use DRAT-Trim to extract unsat core
- Score(v) := if \(v\) in core then 1 else 0.

Idea: only variables in a core are useful to case split on

DNN architecture: NeuroSAT (a graphical Neural Network)

\section*{Experiment:}
- Generated 100,000 unsat problems from SAT competition 2014-2017
- Trained network with cores from the training set
- Integrated in SAT solvers glucose, MiniSAT, Z3 by periodically refocusing case split queue
- Evaluated on SAT2018
- Solved +10\%/+20\% more

\section*{Background and Learnings}
- Clauses:
- Graphical Network:
- DRAT proof Trail:

- Learning: Access to DRAT proof trail enables 20/20 hindsight for optimization. Makes RL less relevant.
- Future: We could explore space of objective functions much more and instance specific uses.

\section*{Research Question: Scaling Search}

Problem: How to use cloud resources to solve really-hard problems?

State of art: Cube \& Conquer in SAT solvers, Branch \& Bound in MIP

Opportunity: Use Azure infrastructure for scalable Cube \& Conquer for SMT

\section*{Cube, Cloud and Z3}

Rahul Kumar (MSR)
Miguel Neves (U Lisboa)
```

