
October 2017, St. Petersburg

 Software Engineering Conference Russia
October 2017, St. Petersburg

Software Engineering Conference Russia

New approach of network
function creation

Ilia Filippov, Intel

Legal Information
• Intel technologies’ features and benefits depend on system configuration and may require enabled

hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.

• No computer system can be absolutely secure.

• Software and workloads used in performance tests may have been optimized for performance only on
Intel microprocessors.

• Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems,
components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other
products. For more complete information visit http://www.intel.com/performance.

• Tests document performance of components on a particular test, in specific systems. Differences in
hardware, software, or configuration will affect actual performance. Consult other sources of information
to evaluate performance as you consider your purchase. For more complete information about
performance and benchmark results, visit http://www.intel.com/performance.

• Cost reduction scenarios described are intended as examples of how a given Intel- based product, in the
specified circumstances and configurations, may affect future costs and provide cost
savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

• Results have been estimated or simulated using internal Intel analysis or architecture simulation or
modeling, and provided to you for informational purposes. Any differences in your system hardware,
software or configuration may affect your actual performance.

• Intel does not control or audit third-party benchmark data or the web sites referenced in this document.
You should visit the referenced web site and confirm whether referenced data are accurate.

• Intel, the Intel logo and others are trademarks of Intel Corporation in the U.S. and/or other countries.

• *Other names and brands may be claimed as the property of others.

• © 2017 Intel Corporation.

2

http://software.intel.com/en-us/articles/optimization-notice/
http://www.intel.com/performance
http://www.intel.com/performance

About me

• Ilia Filippov - architect and developer of YANFF

• Senior Software Engineer at Intel Corporation

• PhD student of Moscow Institute of Physics and Technology

• Located in Austin TX, US

3

http://software.intel.com/en-us/articles/optimization-notice/

NFV – Network Function Virtualization

• Before: Middle-boxes
• Expensive

• Inflexible

• Costly change

• Non-scalable

• After: SW at commodity HW
• Cheap

• Flexible

• Scalable

• NFV is orthogonal to SDN – Software Defined Network

• NFV deployment is orthogonal to NFV development 4

• Network handles lots of things except packet forwarding!

http://software.intel.com/en-us/articles/optimization-notice/

NFV development problems

• Changing of whole industry. No hardware devices,
only software

• Who will write functions?

• How?

• When?

• How fast? How often?

• Can you write a tiny function which will receive->send
packets before the end of this presentation?

5

http://software.intel.com/en-us/articles/optimization-notice/

YANFF - Yet Another Network Function Framework

• Framework – high level abstractions

• Helper:

set of components for importing while writing network function

• Execution semantics instead of declaration semantics:

created network function is a program

• Open Source

• https://github.com/intel-go/yanff/

• Concurrency, productivity, safety

• GO language

• Performance

• DPDK library as network base

6

http://software.intel.com/en-us/articles/optimization-notice/
https://github.com/intel-go/yanff/
https://github.com/intel-go/yanff/
https://github.com/intel-go/yanff/
https://github.com/intel-go/yanff/

Packet processing graph

• Functions which process packets – flow functions

• There is set of 9 flow functions

• Receive-Send, Generate-Stop

• Separate/Split/Partition-Merge, Handle

• Processing graph is built statically by chaining functions

7

http://software.intel.com/en-us/articles/optimization-notice/

Why DPDK – Data Plane Development Kit

• State of the art in high-perf networking on commodity HW

• http://dpdk.org/

• User-mode drivers

• No system calls, No context switches

• No copying between kernel and user

• More profits from DDIO technology

• Hugepages

• No page swapping, less TLB misses

• Memory management

• Preallocated set of constant memory spaces

• Lockless memory buffers 8

http://software.intel.com/en-us/articles/optimization-notice/
http://dpdk.org/
http://dpdk.org/

Using of DPDK
• DPDK: low-level C library (+ user-mode network drivers)

• C calls from GO? CGO!

• CGO functions calls are expensive

• DPDK functions only for low level and at separate cores:

• Receive (allocate), Send/Stop (release)

9

http://software.intel.com/en-us/articles/optimization-notice/

Garbage collector

• GO language has safe memory release by GC

• Real time library based on language with GC? Really?

• Yes, it is not a framework for mission critical latency tasks

• Other tasks are doing well

• How

• GO GC has comparatively small pauses ~1ms

• Packets are in C (DPDK allocated memory) – no garbage

• GC can stop everything! Except receives! – They are in C

• Packet buffers are enough for stop-the-world for 3ms

10

http://software.intel.com/en-us/articles/optimization-notice/

Customization
• Four flow functions are customizable:

• Handle, Generate, Separate/Split

• User function as parameter

• Low-level optimization BUT high-level customization

• No user involving in prefetches, concurrency, etc.

• User function gets each packet or vector of packets for SIMD

• Each function can be cloned or stopped

• According to the strength of packet flow

• And uses separate core

11

http://software.intel.com/en-us/articles/optimization-notice/

Deep in details
• Flow functions are chained via lockless ring buffers

• Copy free paradigm

• Ring buffers transfer only pointers to packets

• Flow function is a goroutine and is bind to exact core

12

http://software.intel.com/en-us/articles/optimization-notice/

Additional helpers

• Packet parsing

• Not raw bytes, but high-level structure with protocols levels

• Checking rules

• L2, L3, L4

• Checking ACL from two file formats

• Possibility of dynamic ACL changing

• Debugging

• Writing and reading from PCAP file

• Real-time packets number statistics

13

http://software.intel.com/en-us/articles/optimization-notice/

Code example: forwarding/dumping
package main

import (

 "fmt"

 "github.com/intel-go/yanff/flow"

 "github.com/intel-go/yanff/packet"

)

func main() {

 flow.SystemInit(&flow.Config{ CPUCoresNumber: 10, })

 inputFlow := flow.SetReceiver(0)

 printFlow := flow.SetPartitioner(inputFlow, 50000000, 1)

 flow.SetHandler(printFlow, hexdumper, nil)

 outputFlow := flow.SetMerger(inputFlow, printFlow)

 flow.SetSender(outputFlow, 1)

 flow.SystemStart()

}

func hexdumper(currentPacket *packet.Packet, context flow.UserContext) {

 fmt.Printf("Raw bytes=%x\n", currentPacket.GetRawPacketBytes())

}

14

http://software.intel.com/en-us/articles/optimization-notice/

Results (1/2) IPSec
• DPDK performance is state of the art

• There is no aim to surpass DPDK in performance

• The aim is to surpass in productivity and scaling without
loosing performance
• ~210 code lines YANFF vs ~1500 code lines DPDK

15

http://software.intel.com/en-us/articles/optimization-notice/

Results (2/2) Simple forwarding

• Simple Forwarding (9 ACL rules) can handle 100% of
NIC speed with packets from 256 bytes

• *NIC has 28GB/s at 64 byte packets, instead of 40GB/s

16

http://software.intel.com/en-us/articles/optimization-notice/

Further development: deployment
• We are going to introduce new NFV deployment

scheme in the cloud

• No OpenStack / OpenNFV

• Per tenant scaling between machines

• Run to completion model per each tenant on each machine

• Cloud boundary node as a gate in/out

• This scheme will be suitable for any virtual functions

• Works natively with YANFF created functions

17

http://software.intel.com/en-us/articles/optimization-notice/

Conclusion

• New framework for rapid development of network
functions

• https://github.com/intel-go/yanff

• Under heavy continuous development

• Questions?

18

http://software.intel.com/en-us/articles/optimization-notice/

All in all

• External (bytes inside network)

• Flow (*mbufs inside rings)

• Packets (as function arguments)

Send (Port)

Flow -> driver (loop)

Receive (Port)

driver (loop) -> Flow

Stop
Flow -> free

Separate(SeparateFunction) {input stay}

 -> Flow
Flow -> SeparateFunction -> Flow

Merge {slow}

 Flow ->
Flow -> Flow

User defined functions

Separate Function *
-> Packet -> Boolean value ->

Handle Function *
-> Packet ->

Flow functions

Handle (SeparateFunction) {can drop}

 -> Stop
Flow -> SeparateFunction-> Flow

Generate (GenerateFunction) {can wait}

GenerateFunction -> Flow

Connections

bool

Packet functions

Parsing packet fields
Parse L2 or/and L3 or/and L4 levels

Partition (periodicity)

 -> Flow
Flow -> calculation -> Flow

Instances (new types)

Flow
Abstraction without public fields,

which is used for pointing connections
between Flow functions.

Opened by Receive / Split /
Separate / Counter / Generate.
Closed by Send / Merge / Stop.

Packet
High-level representation of network
packet. Private field is *mbuf, public

fields are mac / ip / data /etc: pointers
to mbuf with offsets (zero copy).

Is extracted before any User defined
function. Can be filled after user

request by Packet functions. Can be
checked by Rule functions.

Split Function
-> Packet -> № of Flow ->

uint

Split (SplitFunction) {input closed}

 -> Flow
Flow -> SplitFunction -> Flow
 -> Flow

Checking packet fields by rule
Check L2 or/and L3 or/and L4 levels

• Flow: type “Flow” Init, Starting, Checking, Flow functions
• Packet: type “Packet”, parsing / initializing packet functions
• Rules: type “Rule”, parsing rules / checking Packet functions
• User package: user defined functions

Library External Components

Create rule
Create checking rule from json / config

• Scheduler: Cloning of user defined flow functions
• Asm: assembler functions added to GO
• Common: technical functions shared by other components
• Low: connections with DPDK C implementation

Library Internal Components Handle (HandleFunction) {can’t drop}

Flow -> HandleFunction -> Flow

Port
Network

door, used in
Receive,

Send.

Initializing packet fields
Initialize L2 or/and L3 or/and L4 levels

Rule functions

Rule
Set of

checking
rules, used in
User defined

functions.

Encapsulate / Decapsulate

Generate Function *
Packet ->

* Can
process

vector of
packets at
one time

All
functions

take packet
and

handling
context All

functions at
separate
cores and

can be
cloned

19

Optimization notice

20

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that

are not unique to Intel microprocessors. These optimizations include SSE2®, SSE3, and SSSE3 instruction sets and

other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on

microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended

for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for

Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information

regarding the specific instruction sets covered by this notice.

Notice revision #20110804

http://software.intel.com/en-us/articles/optimization-notice/

