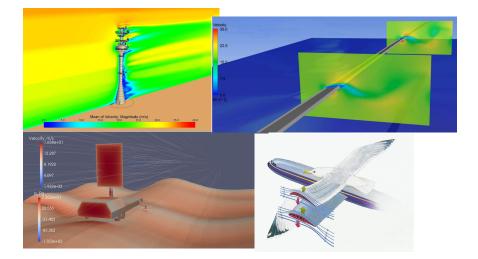
The Tool of Automatic Aerodynamics and Stress Analysis for Radiolocation Systems Based On Open-Source Codes

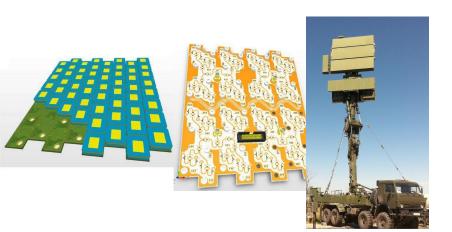
Victoria Korchagova, Matvey Kraposhin, Daniil Ryazanov, Sergei Strijhak, Kirill Vatutin, Valeriia Melnikova, Artem Konovalchik, Oleg Plaksenko, Maxim Konopelkin, Maxim Kudrov, Ivan Martynov

Ivannikov ISP RAS Open Conference

6 December, 2019


- Introduction
 - Example
 - Conditions
- Tools of Automatic Design for Radar
 - Goals
 - Capabilities
 - Composition
- Exploitation
 - Markup
 - Calculation Parameters

- Visualization
- Multiparameter Calculation
- Calculation on Cluster
- Restart
- Implementation
 - Preparing
 - Formation of FE mesh
 - Formation of FE mesh
 - Aerodynamic Calculation
 - Heat Transfer Calculation
 - Strain Calculation
 - Virtualization


Coupled Problems

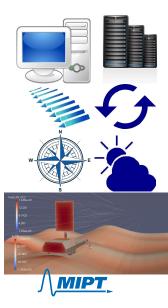
Radar

Conditions

- User-friendly interface
- Usability
- Diagnostic tools
- Control of intermediate results of computations
- Simulations for various constructions:
 - aerodynamics;
 - heat state;
 - strain-stress state
- Fast computations with supercomputers
- Cross-platforming

Additional goals

- Automatic date transmission (e.g. workstation – cluster)
- Coupled work of strongly different tools
- Search of optimal algorithms for mesh building and numerical modeling
- Work process: from operations with geometry to analysis of results

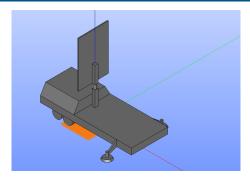


Capabilities

- Computations both on workstation and cluster
- Simultaneous simulations for different conditions
- Restart of computations in case of input data correction
- Various set of conditions:
 - wind speed and direction according to athmospheric logarithm profile;
 - geographical position;
 - sun intensity;
 - terrain relief
- Possibility for simulations for set of positions of different rotating parts of model
- Joint usage of 1D, 2D, 3D elements in the computational model
- Flexible visualisation of results

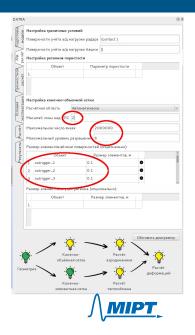
Composition

SALOME: geometry **OpenFOAM**: aerodynamics Code Aster: heat, strain-stress Paraview: visualisation VirtualBox: cross-platforming interface between PyFoam: modules PyQt: graphical interface C++: radiation Python libs: interface. parallelization-bytasks

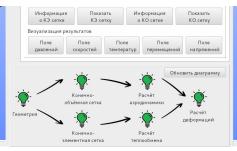

Order of Exploitation

- prepare the geometry:
 - draw your own model or simplify an imported one
 - mark up the model;
- set up physical properties of the construction;
- set up the operational conditions (weather, geography...)
- set up mesh parameters;
- set up parameters for multicomputations;
- set the number of cores and the machine for computations.

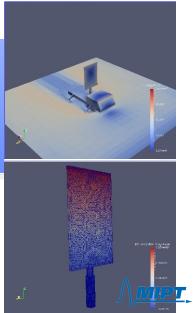
Markup



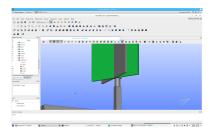
- Key parts of model (ground, TRE...)
- Rotating and static parts
- Volume groups for definition of materials
- Surface and nodal groups for boundary conditions
- Additional groups for mesh refinement


۲	Имя	
Ð	H 🟉 16	
Ð	🗉 🟉 14	
Ð	H 🟉 12	
Ð	H 🟉 15	
Ð	H 🟉 23	
Ð	H 🟉 17	
Ð	🕀 🟉 22	
Ð	🕀 🚅 13	
Ð	🗉 🗃 tre_compound	
Ð		
Ð		
Ð	treCenter	
۲	🖃 📾 radar	
	* tre_compound	
	* 23	
	* 22	
Ð	🖽 🖽 tre	
۲	🕀 🛲 contact	
۲	🖃 🗊 tower	
	* 21	
۲	🗄 🌉 fixed	
۲	🖃 👹 base	
	* 18	
	* 16	
	* 14	
	* 12	
	* 15	
	* 17	
	* 13	
Ð	🕀 🎆 outrigger_1	
Ð	🕀 🎆 outrigger_2	
۲	🕀 🗰 outrigger_3	
Ð	🗉 🗰 outrigger_4	
@ @	🗉 🗰 outrigger_5	
	\Lambda 🗉 🎆 outrigger_6	

- Parameters of FEM and FVM meshes
- Operational conditions:
 - date and time (Grinvich)
 - longitude
 - wind velocity (magnitude, wind, direction)
 - cloudiness
- Boundary conditions for marked groups



Visualization



- Pressure field
- Velocity field and streamlines
- Temperature
- Stress
- Displacement

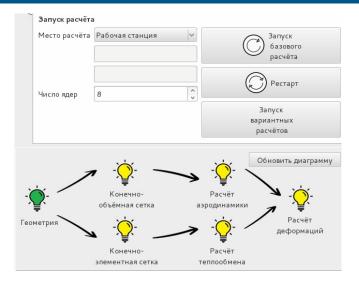
Multiparameter Calculation

Combination of parameters:

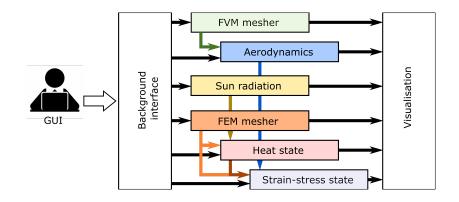
- positions of rotating parts;
- wind parameters;
- sun parameters.

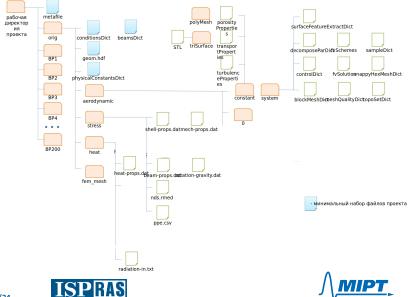
Уr	ол поворота а	нтенны	~	(15 30	45 60 75 90)	\sim
			~	~ 0		
		~ 0				
	<	Сформ	ирова	-	нтные расчёты	\sim
a	блица расчётн	ных случаев	-			
	ол направлен рости ветра, і	одуль скорост ветра, м/с		товорота нны, грај	Облачность	
0	0.0	8.0	0		0	
1	0.0	8.0	15		0	
2	0.0	8.0	30		0	
3	0.0	8.0	45		0	
4	0.0	8.0	60		0	
5	0.0	8.0	75		0	
б	5 0.0 8.0 90			0		
Ba	пуск расчёта					
Место расчёта		Рабочая станци	19	~	C	Запуск базового расчёта
н	сло ядер	8			R	Рестарт
					В	Запуск ариантных расчётов

Calculation Using Cluster


Commands: via ssh File exchange: scp

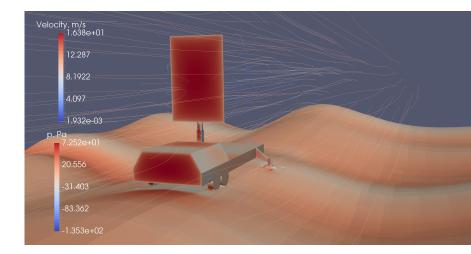
- On workstation:
 - Preparation of computational cases
 - FEM mesh generation
 - Computation of heat flows through radar surface
- On cluster:
 - FVM mesh generation (MPI)
 - Computation of aerodynamics (MPI)
 - Computing of heat transfer inside radar (tasks)
 - Computing of stress-strain state (tasks)

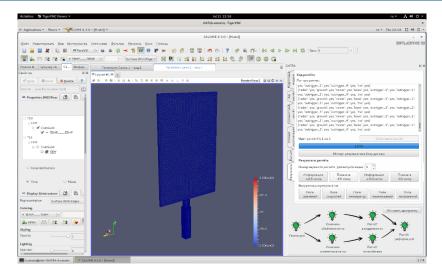

Restart of Calculations

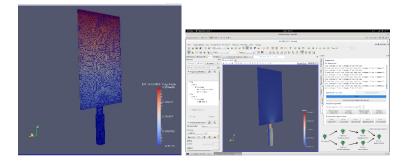

Scheme of Data Flows

Preparatory stage

Finite Element mesh formation


Finite Volume mesh formation


Aerodynamic Calculation


Heat Transfer Calculation

Strain Calculation

• GUI

- Navigation
- Simulation control
- Notices, advises, tips
- Simulation on cluster
- Multiparameter Calculation
 - Interpolation
- Coupled work of strongly different tools

