Расчет параметров течения в модельном ветропарке с учетом данных ветромониторинга

Арина Крючкова, Константин Кошелев, Сергей Стрижак

ОТКРЫТАЯ КОНФЕРЕНЦИЯ ИСП РАН ИМ. В.П. ИВАННИКОВА - МОСКВА, 22-23 НОЯБРЯ 2018 г.

IVANNIKOV ISP RAS OPEN CONFERENCE - MOSCOW, 22-23 NOVEMBER, 2018

Содержание

- Ветроэнергетика
- Данные о ветропарке в Ульяновской области РФ
- Математическая модель
- Расчет физических параметров в АПС
- Постановка модельных задач с 2,12,14 ВЭУ
- Результаты расчетов
- Заключение

Ветроэнергетика в мире

<u>Countries:</u> Denmark, Germany, Netherlands, Spain, USA, China, India

Russia (Фортум/Роснано, Росатом, Энел): строительство новых ветропарков в 2018-2020 г.

Scientific schools:

Technical University Denmark – Prof. Sørensen Jens Nørkær Johns Hopkins University - Prof. Charles Meneveau École Polytechnique Fédérale de Lausanne (EPFL) – Prof. Fernando Porté-Agel TU Delft, NTNU (Norway), KTH, University of Exeter, Portland State University (USA), CENER (Spain) TSAGI Russia – проф. Н.Е. Жуковский, Г.Х. Сабинин, B.П. Ветчинкин, Б.Н. Юрьев, Г.И. Майкопар, Е.С. Вождаев IT SB RAS Russia - Prof. V. Okulov, Dr. I. Naumov

Companies:

Vestas (Denmark), Enercon (Germany), Siemens Wind (Germany), Gamesa (Spain), NREL (USA), GE Energy (USA),

Sinovel (China), Suzlon Energy (India)

Projects: EU ESWIRP,EU AVATAR, MesoWake,

WindForS (www.windfors.de)

Topics:

- 1. Materials and structures
- 2. Wind and turbulence
- 3. Aerodynamics
- 4. Control and system identification
- 5. Electricity conversion
- 6. Reliability and uncertainty modelling
- 7. Design methods
- 8. Hydrodynamics, soil characteristics and floating turbines
- 9. Offshore environmental aspects
- 10. Wind energy in the electric power system
- 11. Societal and economic aspects
- 12. SCADA field measurements

Русская школа роторной аэродинамики ЦАГИ им. Н.Е. Жуковского (1918-2018)

Жуковский Н.Е. Ветчинкин В.П.

Юрьев Б.Н.

Сабинин Г.Х.

Жуковский Н.Е. (1847-1921)

"Вихревая теория гребного винта" цикл из 4-х статей, изданный с 1912 по 1918 г. Три другие работы, посвященные ветрякам. Последняя издана в 1920 г. Основной результат (Жуковский, 1920; Betz, 1920): предельное значение энергии ветра в 59.3 %, которую можно утилизировать

Зарубежная школа роторной аэродинамики

Froude R.E.

Prandtl L.

Betz A.

Lancaster F.

The Russian book Okulov V.L., Sorensen J.N., van Kuik G.A.M. Development of the optimum rotor theories. *Moscow-Izhevsk: R&C Dyn.*, 2013. 120 p. ISBN 978-5-93972-957-4.

Среднегодовая скорость ветра на высоте 100 м в РФ

Потенциал в субъектах РФ рассчитывается на основе метода АНО «НИЦ «Атмограф»

«РАВИ» Обзор российского ветроэнергетического рынка за 2017 год.

Характерные масштабы

		<u> </u>						-
Ishle	1	Scale	remuremente	443	112990.cl	tuchena	aarod	1210 24224 (201
lable		Scale	requirements	111	wind	iui ome	acrou	vnannes

	Length scale (m)	Velocity scale $(m s^{-1})$	Timescale (s)
Aerofoil boundary layer	0.001	100	0.00001
Aerofoil	1	100	0.01
Rotor	100	10	10
Cluster	1000	10	100
Wind farm	10 000	10	1000
Cluster of wind farms	100 000	10	10 000

M~ 0.3 Re=10e7 - 10e8 $R_b = H_g(\Theta_{HUB} - \Theta_0)/\overline{T}U_{HUB}^2$, $(TSR) = \Omega R/U_{HUB}$

Проблема 1: Учет влияния порывов ветра на работу ВЭУ

Проблема 2: Учет влияния орографии местности на работу ВЭУ

Проблема 3: Оценка влияния взаимодействия турбулентных следов за ВЭУ

Wind Energ. Sci., 1, 1–39, 2016

Модельный ветропарк с 14 ВЭУ в селе Архангельское Ульяновской области РФ. Широта 54°26'. Данные 2016 г.

Данные из программы Google Earth Pro в районе поселка Красный Яр Ульяновской области. Широта 54°26'.

Установлено 14 ВЭУ китайской компании Dongfang DF2.5MW-110 мощностью 2,5 МВт

Схема расположения ветроустановок. Получено с помощью программы QGIS.

Результаты проведения ветромониторинга в Ульяновской области РФ

- 23 сентября 2011 года в районе села Архангельское был установлен ветроизмерительный комплекс (ВИК) высотой 50 м.

- По итогом годового цикла ветромониторинга (октябрь 2011 г. – сентябрь 2012 г.) было принято решение об увеличении высоты ВИК, что позволило бы рассматривать в проекте более современные ВЭУ.

- 26 ноября 2012 г. высота ВИК была увеличена до 67 м.

- Данные ветромониторинга с 23.09.2011 по 25.05.2012 были использованы для анализа воздействия препятствий вокруг ВИК, затенения датчиков и моделирования сезонного изменения вертикального профиля ветра.

Средняя скорость и профиль ветра, построенный по результатам 12 месяцев измерений

скорость ветра (м/с)

Результаты проведения ветромониторинга Роза повторяемости скорости ветра и энергии, распределение Вейбулла, роза средней скорости ветра

Основное направление ветра: W, SSE, NNE

Математическая модель Метод крупных вихрей – LES Метод контрольного объема SOWFA – открытая библиотека

 $\frac{\partial \overline{u}_j}{\partial x_i} = 0$ - Уравнение неразрывности $\overline{u}_{i} = u_{i} - u_{i}^{\prime}$ - Значение скорости после процедуры фильтрации $\frac{\partial \overline{u}_{i}}{\partial t} + \frac{\partial}{\partial x_{i}} \left(\overline{u}_{j} \overline{u}_{i} \right) = -2\varepsilon_{ijk} \Omega_{j} \overline{u}_{k} - \frac{\partial \widetilde{p}}{\partial x_{i}} - \frac{\partial}{\partial x_{i}} \left(R_{ij}^{D} \right) + \left(\frac{\rho_{b}}{\rho_{0}} - 1 \right) g_{i} - \left\langle \frac{\partial p}{\partial x_{i}} \right\rangle + f_{i}$ - Уравнение движения \mathcal{E}_{iik} - the alternating tensor, Where в приближении Буссинекса Ω_j - Rotation Rate Vector for Earth, \tilde{p} - Modified pressure variable, R_{ii}^D - Fluid stress tensor. $\frac{\partial \overline{\theta}}{\partial t} + \frac{\partial u_j \overline{\theta}}{\partial x_j} = -\frac{\partial \tau_{\theta_j}}{\partial x_j} -$ Уравнение для потенциальной температуры

Where $\overline{\theta}_{i}$ - the resolved-scale potential temperature, τ_{j} - is the SGS temperature flux

Actuator Line Model for wind turbine

$$f_i^{turbine}(r) = \frac{F_i^{actuator}}{\varepsilon^3 \pi^{3/2}} \exp\left[-\left(\frac{r}{\varepsilon}\right)^2\right]$$

Total Aerodynamic Force

Aerodynamics coefficients

 $C_x(\alpha) = C_y(\alpha)$ are known for different profiles

Angle of Attack from -180 till 180. The Simple bodies for wind turbine are: "Cylinder1, "Cylinder2", airfoil profiles "DU40_A17", "DU35_A17", "DU30_A17", "DU25_A17", "DU21_A17", "NACA64_A17"

Поверхностная модель сдвиговых напряжений

$$u_*^2 = \sqrt{\left\langle \tau_{13s}(x,y) \right\rangle^2 + \left\langle \tau_{23s}(x,y) \right\rangle^2}$$

friction velocity

$$\left|\left\langle \overline{U}(z_1)\right\rangle\right| = \frac{u_*}{k} \left[\log\left(\frac{z_1}{z_0}\right) - \psi_m\left(\frac{z_1}{L}\right)\right]$$

Monin-Obukhov ABL similarity laws (angle brackets denote planar average)

The Obukhov length

$$\tau_{i3s}(x,y) = -u_*^2 \frac{\overline{U}_i(x,y,z_1)}{\left| \left\langle \overline{U}(z_1) \right\rangle \right|}$$

The surface shear stress model of Schumann

Constraints

 $L = -u_* \frac{\theta_0}{kgq_*}$

- Relies on planar averages (angle brackets)
- Mathematically valid only for flow over flat terrain

Нейтральный и Устойчивый АПС

- Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study (GABLS) model intercomparison case
- Flat terrain
- Cases: 3000 m x 3000 m x 1020 m
- 150x150x51 grid (20 m) and 300x300x102 grid (10 m)
- Surface cooling rate 1.38889 K/s
- Periodic BCs
- Geostrophic wind Ug логариф. профиль
- 54.6 N latitude
- *z*o =0.15 m
- SGS models:

Standard Smagorinsky Dynamic Lagrangian Smagorinsky

Расчетная область и сетка

U magnitude поле. $t = 20\ 000\ c.$ верхний - "neutral", нижний - "stable".

Поле температуры для нейтрального АПС. t = 20000 с. Сетка 300х300х102

Сравнение полей скорости при t=0, t=20 000 секунд

Пульсации скорости на высоте 90 м., сетка 150х150х51

2.078e+00 1.0315 -0 -1.0315 ⁼-2.048e+00

Необходимо учитывать пульсации скорости и давления. Важно для оценки влияния действующих сил на лопасть ВЭУ.

Blind test4 2015 пример

Различное положение ветроустановок:

- x/D = 2.77 x/D = 5.18 x/D = 9.00
- Low turbulence uniform inflow: Tu=0.23%
- **High turbulence uniform inflow:** Tu= 10.0%
- The blades were machined in aluminum and have a NREL S826 airfoil section from root to tip
- DTow, T1 = 0.11m,
- *T*2 the rotor sits on top of a stepped tower consisting of 4 cylinders of different diameters.
- *T2* is the same turbine that was used in BT1.
- The nacelle of turbine T1 is a circular cylinder of DNac, T1 = 0.130m diameter.
- The nacelle of T2 is also circular but with a diameter of DNac, T1 = 0.130m.
- Диаметр ротора *DT1* = 0.944*m*, *DT2* = 0.894*m*.
- *lBlade*= 0.413*m* and are directly mounted on the hubs with the diameters *Dhub*,

Fig. Model wind turbines in the wind tunnel (x/D=9.00) in NTNU, Trondheim, Norway

The model turbines were tested in a closed-return wind tunnel.

It has a test section which is 2.71m wide and 11.15m long.

Расчетная область и сетка

Расчетная область: (0 -1.355 0) - (11.15 1.355 3.6) метра

Экспериментальные данные доступны при x/D=2.77, 5.18, 9.0

Сетка: 2, 4, 8 млн. ячеек

Сравненение безразмерной скорости *U/Uref* для x/D=2.77

Коэффициенты мощности C_р и осевой тяги C_T.

$$C_{P,T1/T2} = \frac{0.11/12}{\rho \pi D_{T1/T2}^2 U_{ref}^3}$$

Эксперимент в EnFlo Laboratory, University of Surrey Guildford (the stable, unstable and reference neutral cases)

Dr=416 mm, Dt=13 mm, Uref=1.5 m/s, TSR=6

Blade chord and twist

View of wind turbines in the working section, looking upstream. A 3-wide × 4-deep array. E. Hancock and T. D. Farr 2014 *J. Phys.: Conf. Ser.* **524** 012166.

Расчетная область, сетка (4.6,8 млн. ячеек), Precursor method, ГУ для примера с 12 ВЭУ

Boundary	ВС
Inlet	2D- fields with interpolation from ABLSolver
Wall (wall for wind turbines)	NON-SLIP
Outlet	Atmospheric Pressure Zero Gradient for Velocity

Расчет поля завихренности и скорости для 12 ВЭУ в момент времени T = 20 секунд

Сетка: 6 млн. ячеек TSR=6

Расчет на кластере 1 пример: 72 ядра

Y/R

Расчет поля скорости для случая с 14 ВЭУ в момент времени T = 15 секунд при Ug=1.5 м/с

Сетка: 6 млн. ячеек TSR=6

Расчет на кластере 1 пример: 72 ядра

Заключение

- Проведены тестовые расчеты для известных примеров с использованием библиотеки SOWFA
- Требуется учет влияния орографии местности для действующего ветропарка
- Необходимо исследование влияния различных моделей для турбулентной подсеточной вязкости
- Проведение расчетов в масштабе 1:1
- Новые ветропарки в Краснодарском крае и Карелии: новые вызовы
- Работа выполнена при финансовой поддержке РФФИ (грант № 17-07-01391).

Игорь Вячеславович Ткаченко

доктор технических наук, профессор РАН

(1971-2018)

Available SGS LES models in SOWFA

Modified SGS Models

- United Kingdom Met Office Smagorinsky model [1]
- Sensitized to flux Richardson number
- Backscatter through random number accelerations and fluxes
- One-equation anisotropic [2]
- Contains an "isotropy" factor
- Reduces dissipation near surface in high shear
- Nonlinear one-equation [3]
- Anisotropy through nonlinear stress/strain relationship
- Accounts for backscatter

Dynamic Lagrangian Smagorinsky model (LASI model)

1. Mason, P. J.; Thompson, D. J. (1992). "Stochastic Backscatter in Large-Eddy Simulations of Boundary Layers," *Journal of Fluid Mechanics*, Vol. 242, pp. 51-78.

2. Sullivan, P. P.; McWilliams, J. C.; Moeng, C.-H. (1994). "A Subgrid-Scale Model for Large-Eddy Simulation of Planetary Boundary-Layer Flows," Boundary-Layer Meteorology, Vol. 71, pp. 247-276.

3. Kosović, B. (1997). "Subgrid-scale Modeling for the Large-Eddy Simulation of High-Reynolds-Number Boundary Layers," Journal of Fluid Mechanics, Vol. 336, pp. 151-182.

A Lagrangian-averaged scale-independent (LASI) dynamic Smagorinsky model

$$\begin{split} \frac{\partial \mathscr{I}_{LM}}{\partial t} &+ \frac{\bar{U}_{J}\mathscr{I}_{LM}}{\partial x_{J}} = \frac{1}{\theta \bar{\Delta} \left(\mathscr{I}_{LM}\mathscr{I}_{MM}\right)^{-1/8}} \left(L_{IJ}M_{IJ} - \mathscr{I}_{LM}\right), \\ \frac{\partial \mathscr{I}_{MM}}{\partial t} &+ \frac{\bar{U}_{J}\mathscr{I}_{MM}}{\partial x_{J}} = \frac{1}{\theta \bar{\Delta} \left(\mathscr{I}_{LM}\mathscr{I}_{MM}\right)^{-1/8}} \left(M_{IJ}M_{IJ} - \mathscr{I}_{MM}\right) \\ C_{s}^{2} &= \frac{\left(M_{IJ}L_{IJ}\right)}{\left\langle M_{kl}M_{kl}\right\rangle}, \end{split}$$

C. Meneveau, T. Lund, W. Cabot, Journal of Fluid Mechanics **319**, 353 (1996)

Тестовый пример с Атмосферным Пограничным Слоем (АПС)

- Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study (GABLS) model intercomparison case
- Flat terrain
- 400 m x 400 m x 400 m
- 64x64x64 grid (6.25 m) and 128x128x128 grid (3.125 m)
- Initial temperature profile constant up to 100 m, capped by inversion
- Surface cooling rate 0.25 K/hr
- Periodic BCs
- Geostrophic wind U=8 m/s
- 73 N latitude
- *z*o =0.1 m
- SGS models:
- Standard Smagorinsky
- LASI dynamic Smagorinsky

Numerical domain and grid

Field of value Cs at t=30 000 s

Поле скорости U0 в различные моменты времени

Magnitude velocity field at t=1000 s

Magnitude velocity field at t=20 000 s

Magnitude velocity field at t=10 000 s

Magnitude velocity field at t=30 000 s

Mean vertical profiles of (a) wind speed, (b) wind direction, and (c) potential temperature from simulation of the present study and the GABLS model

Расчет спектра энергии Е(к) для 12 ВЭУ

Figure. 3D box in numerical domain for calculation E(k)

Cp and Ct for case with 12 wind turbines

Turbine	Power	Thrust	Ср	Ct
1	0.3659	0.1027	1.303	0.5486
2	0.3600	0.1028	1.282	0.5491
3	0.3530	0.1037	1.257	0.5539
4	0.3834	0.0914	1.365	0.4882
5	0.3828	0.0929	1.363	0.4962
6	0.3659	0.0906	1.303	0.4839
7	0.3978	0.0927	1.417	0.4951
8	0.3921	0.0974	1.396	0.5202
9	0.3365	0.0968	1.198	0.5170
10	0.3830	0.0968	1.364	0.5170
11	0.3688	0.0968	1.313	0.5170
12	0.3610	0.1005	1.285	0.5368

Positions of wind turbines:

1	2	3
4	5	6
7	8	9
10	11	12

Расчетная область для 14 ВЭУ

