
Linux Kernel Fuzzing in Practice

Alexander Popov

Positive Technologies

ISPRAS Open Conference, December 5–6, 2019

$ whoami

Alexander Popov

Linux kernel developer

Security researcher at

Speaker at: Linux Security Summit, Still Hacking Anyway,

Open Source Summit, Positive Hack Days, etc

Alexander Popov (Positive Technologies) Linux Kernel Fuzzing in Practice 2 / 31

Agenda

What is fuzzing

About syzkaller (my favorite tool)

Tales from my fuzzing experience

Pitfalls: what makes your fuzzing efforts fall short

Alexander Popov (Positive Technologies) Linux Kernel Fuzzing in Practice 3 / 31

Fuzzing

Fuzzing is aimed at finding bugs by providing random inputs to programs

Fuzz testing history starts in the 1980s (fuzzing of command-line utilities)

Earliest syscall fuzzer – Tsys for System V (around 1991)

Linux kernel fuzzers:

◮ Trinity syscall fuzzer

◮ perf_fuzzer for perf_event_open()

◮ syzkaller – a coverage-guided kernel fuzzer (my favorite project)

Alexander Popov (Positive Technologies) Linux Kernel Fuzzing in Practice 4 / 31

What Empowers Fuzzers [1]: Code Coverage Feedback

A fuzzer is more effective if it achieves a higher degree

of code coverage

The tested binary should be instrumented to provide

coverage information

Fuzzer uses this info as feedback to choose interesting inputs

Alexander Popov (Positive Technologies) Linux Kernel Fuzzing in Practice 5 / 31

Architecture of syzkaller

https://raw.githubusercontent.com/google/syzkaller/master/docs/process_structure.png

Alexander Popov (Positive Technologies) Linux Kernel Fuzzing in Practice 6 / 31

What Empowers Fuzzers [2]: Grammar Knowledge

A good fuzzer should contain knowledge of the target API

syzkaller has the syscall descriptions in /sys/linux/

Description example:

resource fd_rfkill[fd]

openat$rfkill(fd const[AT_FDCWD], file ptr[in, string["/dev/rfkill"]],

flags flags[open_flags], mode const[0]) fd_rfkill

write$rfkill(fd fd_rfkill, data ptr[in, rfkill_event], len bytesize[data])

read$rfkill(fd fd_rfkill, data ptr[out, rfkill_event], len bytesize[data])

ioctl$RFKILL_IOCTL_NOINPUT(fd fd_rfkill, cmd const[RFKILL_IOCTL_NOINPUT])

rfkill_event {

idx int32

type int8[0:NUM_RFKILL_TYPES]

op int8[0:RFKILL_OP_CHANGE_ALL]

soft int8[0:1]

hard int8[0:1]

} [packed] dfd

Alexander Popov (Positive Technologies) Linux Kernel Fuzzing in Practice 7 / 31

What Empowers Fuzzers [3]: Bug Detection Mechanisms

Additional bug detection and sanitizers spot errors during fuzzing

Bug detection mechanisms for the Linux kernel:

◮ KASAN, UBSAN, KMSAN, KTSAN

◮ HARDENED_USERCOPY, REFCOUNT_FULL, DEBUG_LIST

◮ lockup detectors

◮ etc

For the mapping to vulnerability types see the Linux Kernel Defence Map:

https://github.com/a13xp0p0v/linux-kernel-defence-map

Alexander Popov (Positive Technologies) Linux Kernel Fuzzing in Practice 8 / 31

https://github.com/a13xp0p0v/linux-kernel-defence-map

Please Credit Researchers

Fuzzing OS kernel does NOT give you vulnerabilities or exploits.

It gives you crashes, which are:

not always meaningful,

not always security-relevant,

not always reproducible,

not unique if you didn’t do any tuning for your fuzzing.

It’s a researcher who finds, exploits, and fixes the bug!

Alexander Popov (Positive Technologies) Linux Kernel Fuzzing in Practice 9 / 31

Tales from My Fuzzing Experience

Tale 1:

CVE-2017-2636

Alexander Popov (Positive Technologies) Linux Kernel Fuzzing in Practice 10 / 31

About CVE-2017-2636

LPE in the Linux kernel introduced in 2009

Bug type: race condition in drivers/tty/n_hdlc.c

All major distros were affected (CONFIG_N_HDLC=m)

Exploit analysis:

https://a13xp0p0v.github.io/2017/03/24/CVE-2017-2636.html

Alexander Popov (Positive Technologies) Linux Kernel Fuzzing in Practice 11 / 31

https://a13xp0p0v.github.io/2017/03/24/CVE-2017-2636.html

Nice! But How?

Google is fuzzing the Linux kernel very intensively

But why was it that I found it?

1 I built the kernel with Ubuntu config

2 I baked the kernel modules into the rootfs image

3 The vulnerable module is automatically loaded if the

N_HDLC line discipline is set for a pseudoterminal

Moreover, syzkaller managed to create a C repro for this crash

Alexander Popov (Positive Technologies) Linux Kernel Fuzzing in Practice 12 / 31

A Lucky Experiment?

Yes, absolutely!

Alexander Popov (Positive Technologies) Linux Kernel Fuzzing in Practice 13 / 31

Tales from My Fuzzing Experience

Tale 2:

Fuzzing works if it doesn’t

Alexander Popov (Positive Technologies) Linux Kernel Fuzzing in Practice 14 / 31

If the Fuzzer Doesn’t Work...

A lot of soft lockups, RCU stalls, task hangs, and deadlocks

in my syzkaller dashboard

None of them are reproducible

It looks like the fuzzer is completely broken

Two days of debugging revealed that...

Alexander Popov (Positive Technologies) Linux Kernel Fuzzing in Practice 15 / 31

If the Fuzzer Doesn’t Work... Then It Works!

syzkaller abuses ION allocator and then itself suffers, eh?

No! ION allocator doesn’t respect any memory consumption

restrictions for a process. That’s bad!

Discussion on syzkaller github page:

https://github.com/google/syzkaller/issues/1267

Discussion on LKML:

https://lkml.org/lkml/2019/7/17/507

Alexander Popov (Positive Technologies) Linux Kernel Fuzzing in Practice 16 / 31

https://github.com/google/syzkaller/issues/1267
https://lkml.org/lkml/2019/7/17/507

Tales from My Fuzzing Experience

Tale 3:

Fuzzing works if it doesn’t

Part II

Alexander Popov (Positive Technologies) Linux Kernel Fuzzing in Practice 17 / 31

If the Fuzzer Doesn’t Work Well...

No interesting crashes for several weeks

Lost connection to VMs from time to time

Nothing suspicious for me in syzkaller dashboard

But one fine morning I...

Alexander Popov (Positive Technologies) Linux Kernel Fuzzing in Practice 18 / 31

If the Fuzzer Doesn’t Work Well... Then It Works Great!

But one fine morning I logged in to the fuzzing machine via GUI

And I saw the alert from gnome-abrt...

...that QEMU has crashed. Oh nice!

Alexander Popov (Positive Technologies) Linux Kernel Fuzzing in Practice 19 / 31

QEMU Bug

One week of research and I had a stable reproducer

One more week of research and I created a fix

QEMU has a wrong assertion that DMA transfers handled in

ide_dma_cb() should be a multiple of 512 (the size of a sector)

So the guest VM can crash QEMU with a weird ATA command

:)

Alexander Popov (Positive Technologies) Linux Kernel Fuzzing in Practice 20 / 31

Not All Bugs are Treated Well

I did responsible disclosure to QEMU security team

But they say that it’s not a security issue

So I posted PoC and fixing patch in the public ML:
https://lists.nongnu.org/archive/html/qemu-devel/2019-07/msg01651.html

But maintainers didn’t apply my fix because all that code

should be redesigned

No actions for 4 months, so I’ve started working on it myself:
https://www.mail-archive.com/qemu-devel@nongnu.org/msg662225.html

Alexander Popov (Positive Technologies) Linux Kernel Fuzzing in Practice 21 / 31

https://lists.nongnu.org/archive/html/qemu-devel/2019-07/msg01651.html
https://www.mail-archive.com/qemu-devel@nongnu.org/msg662225.html

Tales from My Fuzzing Experience

Tale 4:

Bug collider

Alexander Popov (Positive Technologies) Linux Kernel Fuzzing in Practice 22 / 31

Promising Crash

I decided to fuzz the Linux kernel compat syscalls

Later my syzkaller instance got an interesting crash

It had a stable reproducer, nice!

It only required access to floppy drives, not root privileges

I started the investigation

Alexander Popov (Positive Technologies) Linux Kernel Fuzzing in Practice 23 / 31

The Bug

Just look at this code snippet in drivers/block/floppy.c

static int compat_getdrvstat(int drive, bool poll,

struct compat_floppy_drive_struct __user *arg)

{

struct compat_floppy_drive_struct v;

memset(&v, 0, sizeof(struct compat_floppy_drive_struct));

...

if (copy_from_user(arg, &v, sizeof(struct compat_floppy_drive_struct)))

return -EFAULT;

...

}

Alexander Popov (Positive Technologies) Linux Kernel Fuzzing in Practice 24 / 31

The Crash on x86_64

It causes memset() of the userspace memory from the kernelspace:

1 access_ok() for the copy_from_user() source (2nd parameter) fails

2 copy_from_user() then tries to erase the copy destination

(1st parameter)

3 But the destination is in the userspace instead of kernelspace :-)

4 So we have a kernel crash:

BUG: unable to handle page fault for address: 0000000041414242

#PF: supervisor write access in kernel mode

#PF: error_code(0x0002) - not-present page

Alexander Popov (Positive Technologies) Linux Kernel Fuzzing in Practice 25 / 31

Bug Collision

I used static analysis tools Semmle QL and Coccinelle to find

similar bugs (it’s another story)

I was ready to send patches to security@kernel.org...

A friend of mine noticed that he saw similar patches on LKML

Yes, Jann Horn from P0 reported them in March 2019

He used sparse tool to find them

Alexander Popov (Positive Technologies) Linux Kernel Fuzzing in Practice 26 / 31

A Lost Patch

Why does fuzzing still hit these bugs?

Because the patch was lost!

I’ve reported that to the maintainers

Jens Axboe will apply Jann’s lost patch for Linux kernel v5.4

The full story: https://a13xp0p0v.github.io/2019/08/10/cfu.html

Alexander Popov (Positive Technologies) Linux Kernel Fuzzing in Practice 27 / 31

https://a13xp0p0v.github.io/2019/08/10/cfu.html

Tales from My Fuzzing Experience

Tale 5:

CVE-2019-18683

Alexander Popov (Positive Technologies) Linux Kernel Fuzzing in Practice 28 / 31

CVE-2019-18683

5-year old race conditions in the vivid driver (V4L2 subsystem)

I created a PoC local privilege escalation exploit (LPE)

Full disclosure:
https://www.openwall.com/lists/oss-security/2019/11/02/1

Fuzzing tricks:

◮ I modified the kernel, not the fuzzer

◮ That allowed the fuzzer to get deeper into the kernel code

and hit the bug

Alexander Popov (Positive Technologies) Linux Kernel Fuzzing in Practice 29 / 31

https://www.openwall.com/lists/oss-security/2019/11/02/1

Closing Thoughts

Fuzzing is just like gold mining:

◮ A lot of people are doing it
◮ You need good hardware
◮ You need to keep an eye on the process all the time
◮ You need to invent special tricks to find something unique
◮ You have no guarantees of success

That kind of research is exhausting...

But it is so exciting when you finally find something!

Alexander Popov (Positive Technologies) Linux Kernel Fuzzing in Practice 30 / 31

Thanks! Questions?

alex.popov@linux.com
@a13xp0p0v

http://blog.ptsecurity.com/
@ptsecurity

mailto:alex.popov@linux.com
https://twitter.com/a13xp0p0v
http://blog.ptsecurity.com/
https://twitter.com/ptsecurity

