S=CR
Agile Formal Engineering
Method for High Productivity
and Reliability

Shaoying Liu
Department of Computer Science
=) Hosei University, Tokyo, Japan
HP: https://sliu.cis.k.hosel.ac.|p/

This work is supported by JSPS KAKENHI
grant number 26240008.

https://sliu.cis.k.hosei.ac.jp/

g SR

SORC8 RN NG

S=CR

Overview

Can We “Fall in Love” with Agile Approaches?

The SOF
Agile-SO
Agile-SO

_ Formal Engineering Method
~L: Agile Formal Engineering Method

L. Three-Step Specification and

Animation

Specification-Based Incremental Implementation
Testing-Based Formal Verification

Tool Support for Agile-SOFL

Conclusions and Future Research

Reference

S=CR

1. Can We “Fall in Love” with
Agile Approaches?

My answer: Yes and No!

Yes: If your project is small and short
(<= 5000 LOC, <=5 months).
No: If your project is large and long, especially
for a critical system.

Why?

mS=CR
Necessary activities for producing
highly reliable software systems:

Understanding =——>» Creation '

mS=CR
Agile manifesto:

(1) Individuals and interactions over processes
and tools

(2) Working software over comprehensive
documentation

(3) Customer collaboration over contract
negotiation

(4) Responding to change over following a plan

S=CR

Advantages and Disadvantages of
Agile Approaches

Advantages:

@ Working software can help strengthen the
communication between the developer and the end-
user.

@ No comprehensive documentation except code can
help reduce the time for documentation and the time
for configuration management.

@ Quick releases can be expected.

S=CR

Disadvantages:

@ Frequent changes of code Is inevitable (for
lacking sufficient understanding of the
requirements in the beginning), which can be

extremely ©
Jnderstand

0e extreme

Ifficult and time-consuming.

Ing of code Is required, which can
y hard as well.

~-requent changes may create more bugs In
code and testing to uncover the bugs Is time-

consuming.

2. The SOFL Formal Engineering
Method

Characteristics:

@ Integration of formal methods (FM) with conventional
software engineering technologies

@ Comprehensible formal specification-based software
construction and verification (inspection and testing),
more practical than FM

@ High automation in inspection and testing
Challenges:

@ Time consuming for formal specification construction
and evolution to keep consistency with the code.

@ Difficult In communication between stakeholders via
formal specifications.

S=CR

The structure of a SOFL specification:

CDFDs + modules + classes

module SYSTEM,;

const; type; var; inv;
process Init;

N process Al;
% process A2;

end-module;

-
-
-

-
-
-

module A2-decom;

4 \
\
const; type; var; inv;

Al

Bl

4 ClassSI;
/| const; type; var; inv; v
,/ method Init;
" method P1;
/ method P2;
! <
i ¢° method P3;
1
= end-class;
1 1
| 1
| 1
1 \
\
\
\ \
\ \
Y ¥ class S2;
‘. const; type; var; inv;
\ b
v method Init;
method Q1;
method Q2;
method Q3;

end-class;

S \
\

\
\
\

\
\

process Init;

process B1; I3

¥ process B2;
process B3;

3 end-module;

B2 —»

B3 ——»

mS=CR
Questions?

(1) Whether the disadvantages of Agile
approaches can be overcome by
taking advantage of the SOFL
formal engineering method?

(2) If yes, how?

3. Agile-SOFL: Agile Formal
Engineering Method

Agile-SOFL is a FEM with effective techniques to achieve
the values given in the Agile manifesto.

Characteristics:

1. A three-step approach to building comprehensible hybrid
specification for analyzing requirements and defining what
to be done by the potential system.

2. Animation-based techniques for specification validation.

3. Testing-Based Formal Verification (TBFV) for program
verification.

4. Incremental Implementation together with the application
of TBFV in small cycles

S=CR
Principle of Agile-SOFL

The Agile-SOHL Three-Step Specification
+

GUI-BaSWon Animation

Software
defects and
errors

4. Agile-SOFL Three-Step
Specification

User’s requirements analysis
and system abstract design

Informal
specification

GUI design and
animation
(e.g., Power Point)

Hybrid
specification

An Agile-SOFL hybrid specification is a specification
written in SOFL that contains both semi-formal
specifications and formal specifications for operations.

S=CR
Major Ideas of the GUI-Aided Approach

to Writing Hybrid Specifications

Animation and evolution for completeness and detailed information

/ g e

Function hierarchy
in Agile-SOFL transformation | Préliminary GUI | Improvement Final GUI
Informal > Hierarchy - Hierarchy
Specification

Writing

Hybrid specification

Tasks for informal specification: Capturing desired
functions, necessary data resources, and
constraints on both functions and data resources.

Precision

Starting point O

1. Functions

2. Data resources

3. Constraints

Completeness

Informal Specification

Informal specification for a simplified ATM software:

1.Functions
1.1 Register a customer
1.2 Withdraw from the bank account
1.2.1 Check the card id and password
1.2.2 Check the amount for withdrawal
1.2.3 Update the account balance after withdrawal
1.3 Deposit to the bank account
1.4 Transfer from one bank account to another
1.5 Inquire about the balance of the bank account
1.6 Finish operations

2. Data resources
2.1 Bank account (F1.2, F1.3, F1.4, F1.5)
2.1.2 Account name
2.1.2 Account number
2.1.3 Account password
2.1.4 Account balance
2.1.5 Bank name
2.1.6 Bank branch code
2.2 Accounts file (F1.2, F1.3, F1.4, F1.5) /*containing a set of bank accounts*/
2.3 Customer information(F1.1)

3. Constraints

3.1 Each withdrawal from a bank account must not exceed 200,000 JPY.
3.2 The account balance cannot be less than 0.

3.3 The amount of each transfer cannot exceed 1,000,000 JPY.

3.4 The amount of each deposit cannot exceed 500,000 JPY

S=CR

The result of the GUI design and animation phase:

Precision

Vv

Starting point O
1. Functions Function 1 GUI:
Function 2 GUI;

2. Dataresources 5 '

Completeness Function n GUI
3. Constraints

Example

Derived GUI hierarchy / /
from the ATM informal =/ 1.1 Register ... Y
specification: # /
y /
b T 1.2 Withdraw ... !
/
7 /
& i /
§< // 1.3 Deposit ... y
/ / /
/ / /
o’ / 1.4 Transfer ... /
/ /
/ / /
// //] /
: p 1.5 Inquire ... //
I / /
| / /
g 1.6 Finish ... /
| /
et LI i] | g, _ 11 L™ Mg |, Py L1 L Wi | J
\
\
\
\
Noagf¥l | T Tt BT NI - g Tpel BRAS - JE1 T S
\\\ ///_ ///
oty 1.2.1 Check the card ... /
/
/
/ /
" 1.2.2 Check the amount ... | /
// //
I 1.2.3 Update the account ... L

Improved Final GUI

WITHDRAWAL BALANCE

SAVINNG REGISTER

TRANSFER FINISH

S=CR

Major tasks for hybrid specification:

(1) Form processes for each function given in the informal
specification and define their data flow dependence using
CDFD (condition data flow diagram).

(1) Write specification for each process occurring in the CDFD.
Each specification is given in pre- and post-conditions, which
can either be a restricted informal expression or a formal
expression.

S=CR

The result of writing the hybrid specification:

Starting pointO)

Completeness

Precision
1. Functions : i
Funct!on 1 GUI; Module 1— CDFD1
Function 2 GUI;
Module 2—{ CDFD2
2. Dataresources _s T
Function n GUI
3. Constraints Module n—{ CDFDn

Example

Formal specification:

module SYSTEM_ATM;
data items declarations;
process Register
process Withdraw
process Deposit
process Transfer
process Inquire
process Finish

end_module;

module Withdraw_Decom /
SYSTEM_ATM;
data items declarations;
process Check_ Card
process Check_Amount
process Update_Account
end_module;

H —» Withdraw /'\‘ /» Finish —»

— | Deposit

-

No. 1

—®| Register \

AN

/

Transfer

o

account_file

Inquire

Check_Amount

/V

2

Check_Card

Update_Account

account_file

No. 2

Detalls of the specification (example):
module SYSTEM_ATM
type
Account = composed of
account_no: nat
password: nat

balance: real
end
var
account_file: set of Account;
Inv

forall[x: account_file] | x.balance >= 0;
[*Account balance must be greater than or equal to zero. */

behav CDFD No.1;

process Withdraw(amount: real, accountl: Account)
e_msg: string | cash: real
ext wr account_file
pre accountl is a member of account_file
post if amount is less than the balance of accountl
then supply cash with the same amount as amount, and
reduce the amount from the balance of the account.
else output an appropriate error message e _msg.
end_process;

[*Semi-formal specification*/

process Withdraw(amount: real, accountl: Account)
e_msg: string | cash: real

ext wr account_file

pre accountl inset account_file

post if amount <= accountl.balance

then
cash = amount and
let Newacc =
modify(accountl, balance -> accountl.balance — amount)
In
account_file = union(diff(~account_file, {accountl}), {Newacc})
else

e _meg = "The amount is over the limit. Reenter your amount.")
comment

end_process;
[*Formal specification*/

end_module

5. Specification-Based Incremental
Implementation

We take the bottom-up approach to
automatically or manually (with tool support)
Implement and test the system based on the
formal specification in an incremental fashion.

Choose a module
from the
formal specification

A
I
I
|
|

|
\

\\\\\\\\\\ p .
~~~~~~~~~ Automatic or manual
iImplementation
\ T
»’, ::
Generate a ,"
Program ;
=~ Test the program

Version release




6. Testing-Based Formal Verification

N ¢ == == == = Program

using TBFV

The goal:

Dynamically check whether the functions defined in the
specification are " correctly” implemented by the program



The theoretical foundation for TBFV

A program P correctly implements a
specification S Iff

Spre(~0) F Spost(~o,P(~0))

where ~o Is any initial state and P(~0) Is treated as a
mathematical function whose definition may not be
represented by a mathematical expression but can be
represented by an algorithm. Therefore, existing

formal proof techniques may not be applied for formal
Verification of P.



Goal of Automatic TBFV

Press a Button

Test

File Edit View

o -

= ees

}

} else :&
}
}

30



Steps of TBFV:

(1) Generate test data from the specification.

(2) Execute the program using the test data.

(3) Analyze test results to detect bugs based on
the test data, the result of execution, and
the specification.



General criteria for test data generation
and for test result analysis:

Definition 5.1 (FSF)

Let Spost=Gi ADi VG, AD:V -V Gn A Dn,
Gi: guard condition

Di: defining condition.

F=a e

Then, a functional scenario form (FSF) of S is:
(Spre A Gi AD1)V (Spre A G2 AD2) V - V
(Spre A Gn A Dn)



Criterion 5.1: Let the FSF of specification S

be:

(Spre A Gi A D1) V (Spre AN G: A Dz) V.V
(Spre A Gn A Dn)

Then, a test set T must be generated to meet
the following condition:

(VGi JtieT- Spre A Gi(t)) A
(HteT° —lSpre)

wherei=1,...,n



A criterion for test result analysis:

Criterion 5.2: If the condition

JteT - Spre(t) A - Spost(t, P(t))
holds, it Indicates the existence of
bugs in program P.



S=CR
/. Tool Support for Agile-SOFL

We have several prototype tools to support the
SOFL specification language and method.

@ Agile-SOFL specification construction tool
(SpecTool)

@ Tool for Specification-Based Testing



€ sorL

SpecTool for A-SOFL specification

File Edit View Tools Help Task SRAT Specification Prototyping Verification Transfromation Testing
NEHdS | $Aale
ModuleExplorer A x SuicaCard.cdfd* v X /" SuicaCardfModule* v X
[=)- SuicaCard - -
“ . ifomal S @ oo b E4EO3H o < A _p EE'E Type Declaration ZI H
‘... SuicaCard fSpec A type
=8 Semiformal SuicaCard = composed of -
&1 SuicaCard sfModule user_info:User F
. i SuicaCard SfCDFD = | [buffer Buffer y A
2 commuter_pass_Info:CommuterPass E
- HER{E_decom.sfModule bank_info Bankirfo
- #1#A{¥,_decom sfCDFD ﬂl;?ih_llgs_s_ag_; |_llend e
- h - MR O B Ef sfModule tiicaData User = composegmqf
LA MR OEH SCOFD |2 ._s\.. Init name:String
: success address:string
B--#éb‘ﬁt sfModule [l date: string
L L SfCDFD end:
[=)- Formal Buffer = composed of
=8 SuicaCard fModule it money:nat0 s
i i~ SuicaCard.cdfd LrEer dule SuicaCard/
i errorM module Suica -
- Init fModule user _e‘i =
- Init cdfd commute Update - st
— bank | succesg, minimum_require = 130;
® Payment .cdfd —P
& Update fModule
- Update.cdfd v type
errorMesage SuicaCard = composed of
Properties 1 x user_info:User £
{CT Al ‘J n.P_a.X,.’Tle_".L payment o buffer:Buffer
CE success commuter_pass_Info:CommuterPass
B Display t;z:k_lnfo:BankInfo
Color of 'Shape ] White User = composed of
El Properties name:String
Input Port Numbe 1 address:string
Name Init date: string =
end;
Output Port Numt 2 Buffer = cormpiosed of
money:nat0
= use_history : seq of sting
end;
CommuterPass = composed of
start_station :sting
start_line : string
. lend_station : string
Seeref ___.S’El‘ia_o_at—a———b lend_line : string
P Reference llimitagion : {<0>,<1> 3> <65}
start_time : Date
end;
Name Bankinfo = composed of
The Name of Process - [pank_name : string
branch_name : string 3 6
4 LI 4 lacount number : string X




File

A Tool for TBFV (SBTT)

HewProject | OpenProject | SaveProject u CloseProject ” Test |

MyTest1

L

hlyTest
D MewTest
D MewTest1

I HewTest1

ess Al setofint vy setofint) 2 set of int
Itz = diff(xy)
‘|process

ess B« seqof char ,y: seqof char) z© set of char
t (% <= [] andy == [] and z = inter(elems(x) elemsy)))
Jx=0ory=Mandz={)

| process

ok

LinkedList inter{char[] seq1, char] segZ){

| »

LinkedList list = news LinkedList();

forfinti = 0; i = seql length; i++)
list.addinew Character{seq1[i]));

Listiterator ite = list listlterator);
Character ohyj;

More | Delete | Bun All | Save while(ite hashext()} 1
ohj = (Character)ite.next();
}[{: sebq Daf']Chm‘[f\;:]SEq chh...;{u:set of char t pre — post — result fDr(int i=0i= SED]EJEr'lgth; i++) L=
A h rue alse alse . . .
0 = < <= true false false If(?i'ﬁggj;ig}igfharacmr(seqz[l]m
} g
e S return list; =
R e e e T | T O




S=CR 10. Conclusions and
Future Work

10.1 Conclusions

@ Agile-SOFL is believed to be much more effective than
existing agile approaches for high productivity and reliability,
and helpful for system maintenance and extension.

@ Agile-SOFL is characterized by the three-step specification
approach, specification animation, specification-based
Incremental implementation, and testing-based formal
verification (TBFV) based on SOFL.

@ Agile-SOFL supports the values emphasized in the Agile
Manifesto, such as individuals and interactions, working
software, customer collaboration, and responding to
changes.



S=CR 10.2. Future Work

Build a more mature software engineering
environment for Agile-SOFL on the basis of
the existing prototype tools.

va

Develop dependable,

large-scale, and
complex computer
systems using Agile-
SOFL under the
support of its SEE

o

/ SOFL to a method-based

Evolve the SEE of Agile-

ISEE

N

Extend the method-based
ISEE to a method-domain-
based ISEE to support
domain specific applications,



SOFL_Tool.avi

S=CR Reference

o,

‘Formal Engineering for
Industrial Software
Development Using the

SOFL Method- | Formal Engineering

. . for Industrial
h L
oy S E s Software Development
Springer-Verlag, 2004,

ISBN 3-540-20602-7

URL.: https://sliu.cis.k.hosel.ac.jp/
(for other publications)



https://sliu.cis.k.hosei.ac.jp/

