## EFFICIENT ALGORITHMS FOR FINDING DIFFERENCES BETWEEN PROCESS MODELS

A.V. SKOBTSOV, A.A.KALENKOVA

2019 IVANNIKOV ISP RAS OPEN CONFERENCE DECEMBER 05,2019

## Process mining



The number of information systems around us is constantly growing...

We don't always know how they are used:

- What actions are most often performed?
- In what order?
- Are there bottlenecks?
- How far we are from the expected behavior of the system.


## Process mining

User interaction:

- Internet marketing;
- E-government services;


Complex multi-component systems (software process mining)


## Industry

## Process mining

- Discovery


Discovery

## Industry

## Process mining

- Enhancement


## Process mining

- Conformance checking



## Process mining. Conformance checking

L2L - Comparison of event structures
L2M - Replay techniques
M2M - Must be something visual?

## Finding Minimal Graph Edit Distance



## A* Algorithm




## A* Algorithm



## A* Algorithm



## NP problem

## Greedy algorithm



Possible solutions

## Greedy algorithm



## Tabu search algorithm

$$
\begin{aligned}
& -\left(n_{1}, n_{2}\right) \rightarrow\left(n_{1}, \epsilon\right),\left(\epsilon, n_{2}\right), \\
& -\left(n_{1}, \epsilon\right),\left(\epsilon, n_{2}\right) \rightarrow\left(n_{1}, n_{2}\right), \\
& -\left(n_{1}, \epsilon\right),\left(n_{1}^{\prime}, n_{2}\right) \rightarrow\left(n_{1}, n_{2}\right),\left(n_{1}^{\prime}, \epsilon\right), \\
& -\left(n_{1}, n_{2}\right),\left(\epsilon, n_{2}^{\prime}\right) \rightarrow\left(n_{1}, n_{2}^{\prime}\right),\left(\epsilon, n_{2}\right), \\
& -\left(n_{1}, n_{2}\right),\left(n_{1}^{\prime}, n_{2}^{\prime}\right) \rightarrow\left(n_{1}, n_{2}^{\prime}\right),\left(\epsilon, n_{2}\right),\left(n_{1}^{\prime}, \epsilon\right), \\
& -\left(n_{1}, n_{2}\right),\left(n_{1}^{\prime}, n_{2}^{\prime}\right) \rightarrow\left(n_{1}, \epsilon\right),\left(n_{1}^{\prime}, n_{2}\right),\left(\epsilon, n_{2}^{\prime}\right) .
\end{aligned}
$$

Possible solutions
Tabu list $=<\mathrm{x}>$

## Tabu search algorithm

$$
\begin{array}{|l}
-\left(n_{1}, n_{2}\right) \rightarrow\left(n_{1}, \epsilon\right),\left(\epsilon, n_{2}\right), \\
-\left(n_{1}, \epsilon\right),\left(\epsilon, n_{2}\right) \rightarrow\left(n_{1}, n_{2}\right), \\
-\left(n_{1}, \epsilon\right),\left(n_{1}^{\prime}, n_{2}\right) \rightarrow\left(n_{1}, n_{2}\right),\left(n_{1}^{\prime}, \epsilon\right), \\
-\left(n_{1}, n_{2}\right),\left(\epsilon, n_{2}^{\prime}\right) \rightarrow\left(n_{1}, n_{2}^{\prime}\right),\left(\epsilon, n_{2}\right), \\
-\left(n_{1}, n_{2}\right),\left(n_{1}^{\prime}, n_{2}^{\prime}\right) \rightarrow\left(n_{1}, n_{2}^{\prime}\right),\left(\epsilon, n_{2}\right),\left(n_{1}^{\prime}, \epsilon\right), \\
-\left(n_{1}, n_{2}\right),\left(n_{1}^{\prime}, n_{2}^{\prime}\right) \rightarrow\left(n_{1}, \epsilon\right),\left(n_{1}^{\prime}, n_{2}\right),\left(\epsilon, n_{2}^{\prime}\right) .
\end{array}
$$

Tabu list $=<\mathrm{x}, \mathrm{y}>$

## Tabu search algorithm

$$
\begin{array}{|l}
-\left(n_{1}, n_{2}\right) \rightarrow\left(n_{1}, \epsilon\right),\left(\epsilon, n_{2}\right), \\
-\left(n_{1}, \epsilon\right),\left(\epsilon, n_{2}\right) \rightarrow\left(n_{1}, n_{2}\right), \\
-\left(n_{1}, \epsilon\right),\left(n_{1}^{\prime}, n_{2}\right) \rightarrow\left(n_{1}, n_{2}\right),\left(n_{1}^{\prime}, \epsilon\right), \\
-\left(n_{1}, n_{2}\right),\left(\epsilon, n_{2}^{\prime}\right) \rightarrow\left(n_{1}, n_{2}^{\prime}\right),\left(\epsilon, n_{2}\right), \\
-\left(n_{1}, n_{2}\right),\left(n_{1}^{\prime}, n_{2}^{\prime}\right) \rightarrow\left(n_{1}, n_{2}^{\prime}\right),\left(\epsilon, n_{2}\right),\left(n_{1}^{\prime}, \epsilon\right), \\
-\left(n_{1}, n_{2}\right),\left(n_{1}^{\prime}, n_{2}^{\prime}\right) \rightarrow\left(n_{1}, \epsilon\right),\left(n_{1}^{\prime}, n_{2}\right),\left(\epsilon, n_{2}^{\prime}\right) .
\end{array}
$$

Z
X
"y
Possible solutions
Tabu list $=<\mathrm{x}, \mathrm{y}, \mathrm{z}>$

## Simulated Annealing algorithm

```
Data: G1 =(N
    - business process graphs; maxTemperature -
    maximal temperature; temperatureDec -
    temperature decreasing step;
Result: graph edit distance between G}\mp@subsup{G}{1}{}\mathrm{ and }\mp@subsup{G}{2}{}\mathrm{ ;
\initialize R Rur - edit relation;
R cur }\leftarrow\mp@subsup{R}{\mathrm{ greedy }}{}\mathrm{ ;
Tcur }\leftarrow\mathrm{ maxTemperature;
while (Tcur >0) do
    generateOneStepVariants( }\mp@subsup{R}{\mathrm{ cur }}{}\mathrm{ );
    variant }\leftarrow\mathrm{ takeRandom(oneStepVariants);
    if P( R
        Rcur }\leftarrow\mathrm{ variant;
    end
    Tcur}\leftarrow\mp@subsup{T}{\mathrm{ cur }}{}\mathrm{ - temperatureDec;
end
return cost(R}\mp@subsup{R}{\mathrm{ cur }}{})
```


## Ant Colony algorithm

1. Initialize pheromone map with the initial value
2. Generate N ants; each ant does the following:
3. Generates all the possible vertex replacements for the current state
4. Calculates the cost for each vertex replacement by the formulae:
edgePheromones ${ }^{\text {pheromonePower }}$
pathCost distancePower
where edgePheromones - the cost of replacing vertices (taken from the pheromone map); pathCost - sum of all the edges and vertex replacements
5. Selects a random replacement with the probability of each replacement:

$$
\frac{\text { replacementCost }}{\text { sumOfAllCosts }}
$$

4. Performs steps 1-3 until all the vertices are processed
5. Change all the pheromone values by formulae: (1 - pheromoneEvaporation) * currentValue
6. For all solutions from the step 2 do the following:
7. Increase the pheromone map's value for the replacement by $\frac{\text { distanceCoeff }}{\text { replacementCost }}$
8. Repeat steps 2-3 predefined number of times

## BPMNDiffViz Tool


https://pais.hse.ru/research/projects/CompBPMN

## Experimental results. BPMN models discovered from artificial event logs (different algorithms)



## Experimental results. BPMN models discovered from artificial event logs (different algorithms)




## Experimental results. BPMN models discovered from real event logs (different parts of logs)




## Experimental results. BPMN models discovered from real event logs (different parts of logs)




## Future work

## Industry

$\checkmark$ New suboptimal methods
$\checkmark$ New application fields

## Theory

$\checkmark$ Compare with other conformance checking methods
$\checkmark$ Different discovery algorithms (different structure of process models)

## Thank you!

A.V. Skobtsov: andrewskobcov@yandex.ru
A.A. Kalenkova: akalenkova@hse.ru

