Девятая независимая научно-практическая конференция «Разработка ПО 2013»

23 - 25 октября, Москва

Прогнозирование характеристик программных проектов с помощью мета-моделирования

Ицыксон В.М., Баженов А.С.

СПБГПУ

Мотивация

- Проблемы
 - неразвитость методов оценки характеристик программных проектов
 - сложность оценки последствий принятия проектных решений
- Причины
 - неформализованность процессов
 - человеческий фактор

• ...

 Необходимы механизмы прогнозирования характеристик программных проектов

Прогнозирование ...

Прогнозирование в области разработки программных проектов

<u>Частные характеристики:</u>

- Длительность конкретной фазы
- Количество дефектов
- Тестовое покрытие
- Стоимость изменений
- ...

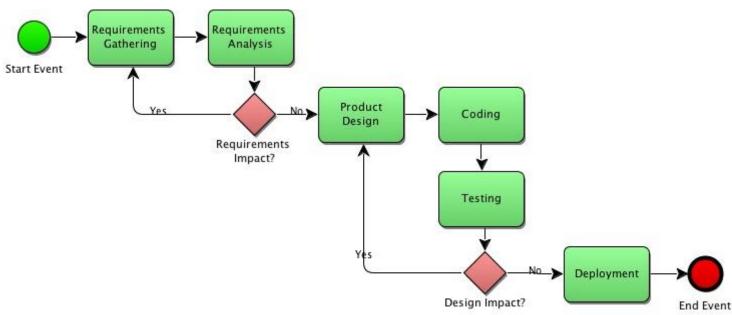
Анализ влияния - как изменения в проекте влияют на его ход?

- Модификация процессов работы
- Перепланирование проекта
- Изменение проектных ресурсов
- Технические решения
- •

Как решают задачу прогнозирования в области разработки ПО?

Требования к подходу

- Унификация способа описания процессов разработки
 ПО
- Легкое масштабирование подхода
- Гибкость и расширяемость
- Простота в использовании


Предлагаемый подход

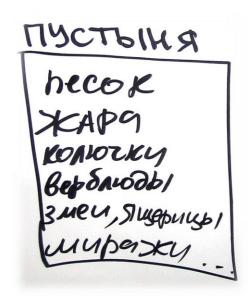
Мета-модель

- Мета-модель шаблон построения моделей процессов:
 - описание проектов произвольных методологий разработки и протекающих в них частных процессов
 - определение свойств процессов и их взаимосвязей, оперируя только необходимым контекстом
 - использование исторической информацию при моделировании
 - создание модели проектов с заданными характеристиками

Мета-модель: фазы и связи

- Процесс разработки описывается фазами и связями между ними
- Фазы могут иметь произвольный временной масштаб
- Для описания моделей используется стандартная нотация (производная от BPMN)

Мета-модель: фазы и связи


Основные типы фаз Библиотека шаблонов фаз * Сбор Анализ требований требований Начальная Проектирование Разработка Настраиваемая Тестирование Развертывание Конечная * - на основе модели Ройса

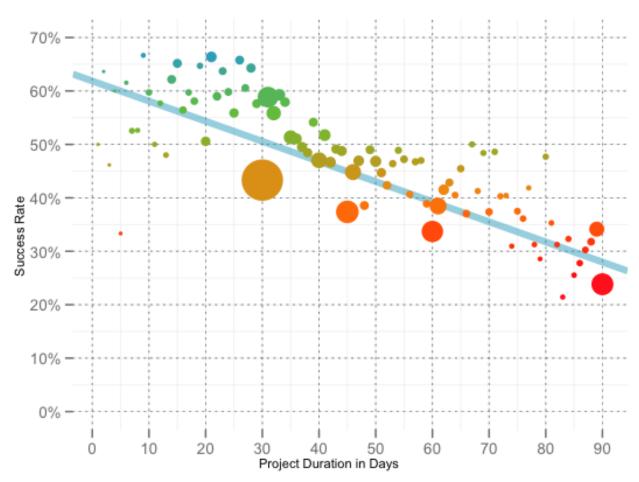
Фазы в модели взаимосвязаны между собой при помощи условных и безусловных переходов (в том числе вероятностных)

Мета-модель: контекст

- Контекст персонифицирует модель и состоит из следующих компонентов
 - Параметры описывают изначальное состояние модели и процессов
 - **Факторы** определяют характеристики процессов (например, длина бэклога или продолжительность фазы)
 - **Правила** логически описывают течение процессов и накладывают на них ограничения
 - **Функции** определяют зависимости между факторами

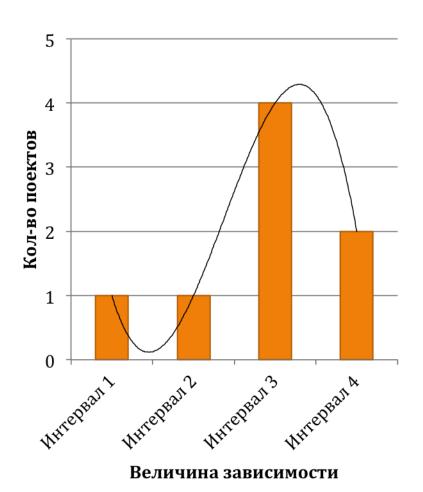
Мета-модель: контекст

- Контекст позволяет определить
 - свойства процессов / фаз и их влияние друг на друга
 - взаимосвязи между фазами (в частности условия переходов)
 - мгновенное состояние проекта в некоторый момент времени
 - наблюдаемые параметры (то, что нам интересно узнать о проекте)


Мета-модель: история

- Историческая информация это набор данных и их взаимосвязей, сформированных после анализа завершенных проектов
- Историческая функция зависимость одного значения контекстного параметра и является частью общего контекста модели
 - Правдоподобность исторической функции определяется объемом и качеством накопленных данных

Мета-модель: история


Пример зависимости успеха проекта от его длительности

Мета-модель: история

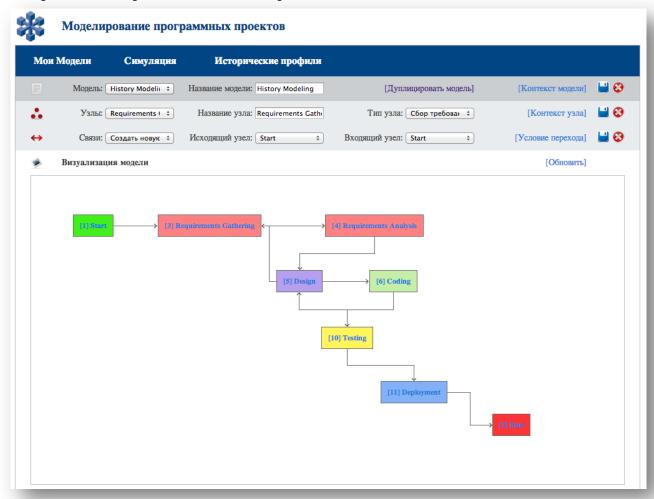
Проект	Плановое значение	Реальное значение	Интервал
A	A_1	A_2	1
В	B ₁	B_2	2
С	C ₁	C ₂	3
D	D ₁	D_2	3
Е	E ₁	E ₂	3
F	F ₁	F ₂	3
G	G_1	G_2	4
Н	H ₁	H ₂	4

Зависимость может быть описана и между большим числом параметров

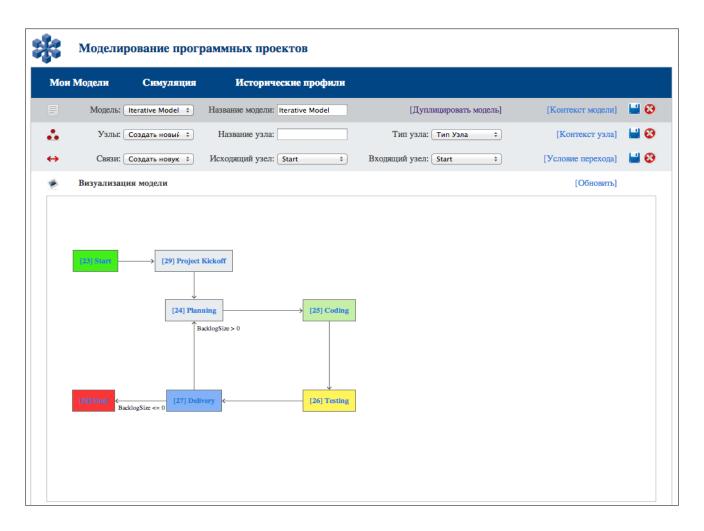
Моделирование

Реализация

Лабораторный прототип

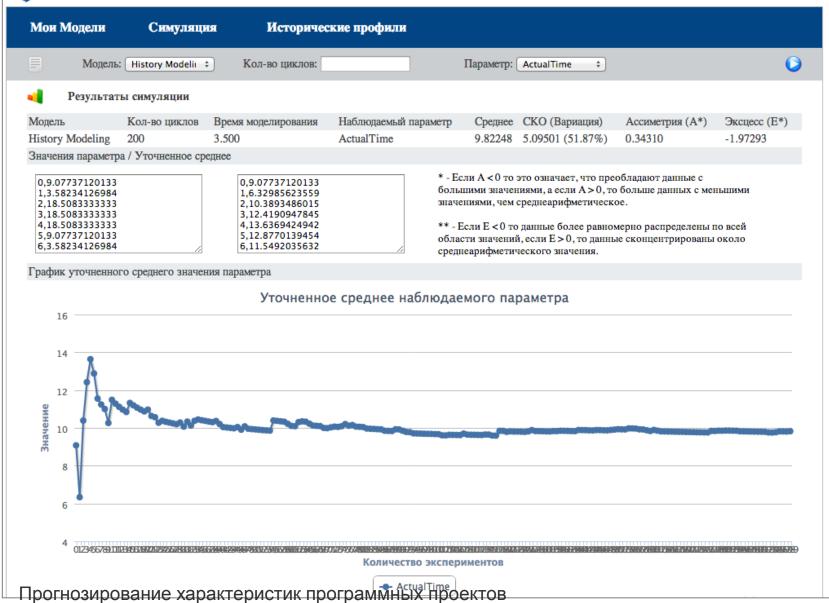

• Основные возможности:

- создание моделей по правилам, описанным в мета-модели
- управление базой данных исторической информации (в том числе проверка релевантности введенных данных)
- множественная симуляция моделей, получение и оценка качества результатов


Как использовать:

- проверка принципов, заложенных в мета-модели на примерах реальных проектов
- экспериментирование с исторической информацией
- сравнение с реальными проектами

Лабораторный прототип



Лабораторный прототип

Моделирование программных проектов

Обеспечение достоверности

- Введение шаблонов типовых проектов
- Наполнение параметризируемой исторической базы знаний
- Анализ конкретных характеристик с точки зрения здравого смысла
- Проверка на реальных проектах с помощью
 - Экспертной оценки
 - Параллельная симуляция с оценкой отклонения

Цель: использовать симулятор как систему поддержки принятия решений в рамках разработки ПО

Заключение

- Предложен подход к прогнозированию характеристик программных проектов на основе мета-модели
- Разработан лабораторный прототип
- Проведена серия экспериментов

Спасибо за внимание