The application of modular arithmetic for matrix calculations

Viktor Kuchukov
junior researcher
vkuchukov@ncfu.ru

Mikhail Babenko
PhD in Physico-mathematical sciences
Associate Professor
mgbabenko@ncfu.ru

IVANNIKOV ISP RAS OPEN CONFERENCE MOSCOW, 5-6 DECEMBER, 2019

Array and Matrix

- Digital signal processing
- Artificial Neural Networks

Scientific challenge

- In critical applications, reliable computing systems with the ability to detect and correct errors are required.

Residue Number System (RNS)

In the RNS any number $X \in[0, M)$ have unambiguously represented by a tuple of residues x_{i}, where for all $i=[1, n] x_{i}$ is remainder of the division of X by p_{i}, p_{i} are coprime numbers (moduli), i.e. $x_{i}=X \bmod p_{i}, M=\prod_{i=1}^{n} p_{i}$ - is the dynamic range.

For numbers $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $B=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ is executed

$$
C=A * B=\left(a_{1} * b_{1}, a_{2} * b_{2}, \ldots, a_{n} * b_{n}\right), \text { where } *=\{+,-, \times\} .
$$

For a representation of negative numbers, the dynamic range is divided into equal parts, and it is possible to represent unambiguously any number X satisfying one of the expressions $\frac{-M-1}{2} \leq X \leq \frac{M-1}{2}$ for odd M and $\frac{-M}{2} \leq X \leq \frac{M}{2}-1$ for even M.

Redundant Residue Number System

To detect and correct an error, two redundant moduli p_{n+1} and p_{n+2} are added to RNS, and the dynamic range of the RRNS will be $P=\prod_{i=1}^{n+2} p_{i}$.

The number $X=\left(x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}, x_{n+2}\right)$, is valid if $X \in[0, M)$ (legitimate range), but in the case of $X \in[M, P)$ (illegitimate range) it can be said that the number contains an error.
M is represented in the RRNS and it is obvious that $M=\left(0, \ldots, 0, m_{n+1}, m_{n+2}\right)$, where $m_{n+1}=M \bmod p_{n+1}, m_{n+2}=M \bmod p_{n+2}$.

Scheme for detecting, localizing and correcting errors based on RRNS

Patent RU2653257 "Modular code error detection and correction device"

```
Algorithm 1 Operation \(\bmod 2^{n}\) using the
logical \(A N D\) operator
Input: \(X=\left(x_{1}, x_{2}, \ldots, x_{n}\right), 2^{n}\).
Output: \(X \bmod 2^{n}\).
    return \(X \&\left(2^{n}-1\right)\)
The modeling of the algorithms took place on a personal computer with a processor Intel i5 and 24 gigabytes of RAM in the programming language Python.
```


Comparison of methods of finding the remainder of the division by module 2^{n}.

Comparison of runtime for moduli set $\left\{2^{n}-1,2^{n}, 2^{n}+1\right\}$.

Convert from RNS

For $X=\left(x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}, x_{n+2}\right)$ with moduli set $\left\{p_{1}, p_{2}, \ldots, p_{n}, p_{n+1}, p_{n+2}\right\}$ there are various methods of translation, for example, the method based on the Chinese Remainder Theorem (CRT), the approximate method based on CRT, the method based on the Mixed-Radix Conversion (MRC).

CRT

$$
\begin{equation*}
X=\left.\left.\left|\sum_{i=1}^{n+2} P_{i} \cdot x_{i} \cdot\right| P_{i}^{-1}\right|_{p_{i}}\right|_{P}, \tag{1}
\end{equation*}
$$

Approximate CRT

where $P=\prod_{i=1}^{n+2} p_{i} P_{i}=P / p_{i}$,
$\left|P_{i}^{-1}\right|_{p_{i}}$ - the multiplicative inversion of P_{i} by module p_{i}.

$$
\begin{equation*}
\frac{X}{P}=\left|\sum_{i=1}^{n} x_{i} \cdot \frac{\left|P_{i}^{-1}\right|_{p_{i}}}{p_{i}}\right|_{1}=\left|\sum_{i=1}^{n} x_{i} \cdot k_{i}\right|_{1}, \tag{2}
\end{equation*}
$$

where $k_{i}=\frac{\left|P_{i}^{-1}\right|_{p_{i}}}{p_{i}}$

Convert from RNS

Comparison of methods of transfer from RNS to positional numeral system.

Scalar product

```
Algorithm 2 Calculation of the scalar
product
Input: \(\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right)\).
Output: \(S=\langle X, Y\rangle\).
    S=0
    for \(i=1\) to \(n\) do
        \(S=S+x_{i} \cdot y_{i}\)
    end for
    return \(S\)
```

```
Algorithm 3 Calculation of the scalar
product with a binary tree
Input: \(\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right)\).
Output: \(S=\langle X, Y\rangle\).
    for \(i=1\) to \(\left\lceil\frac{n}{2}\right\rceil\) do
        \(S_{0, i}=x_{2 i-1} \cdot y_{2 i-1}+x_{2 i} \cdot y_{2 i} / /\) parallel
    end for
    for \(i=1\) to \(\left\lceil\log _{2} n\right\rceil-1\) do
        for \(j=1\) to \(\left\lceil n / 2^{i+1}\right\rceil\) do
        \(S_{i . j}=S_{i-1,2 j-1}+S_{i-1,2 j} / /\) parallel
        end for
    end for
    return \(S_{\left\lceil\left[\log _{2} n\right\rceil-1,1\right.}\)
```


Scalar product

Comparison of scalar product algorithms.

- The simulation of translation operations in the RNS showed the effectiveness of standard Python language tools.
- Hardware-based methods of translation from RNS in software implementation showed worse results than the method based on the Chinese Remainder Theorem.
- It can be concluded that the interaction of FPGA with computers, RNS allows achieving the required level of reliability of calculations.
- Further development of the research will be directed to the application of the residue number system for artificial neural networks and the implementation of the obtained parallel algorithms by means of GPUs on CUDA.

Thanks for your attention

Viktor Kuchukov
junior researcher
vkuchukov@ncfu.ru

Mikhail Babenko

PhD in Physico-mathematical sciences
Associate Professor
mgbabenko@ncfu.ru

