
The application of modular arithmetic for matrix calculations

Viktor Kuchukov Mikhail Babenko

PhD in Physico-mathematical sciences

junior researcher Associate Professor

vkuchukov@ncfu.ru mgbabenko@ncfu.ru

IVANNIKOV ISP RAS OPEN CONFERENCE

MOSCOW, 5-6 DECEMBER, 2019
1 / 13



Array and Matrix

Digital signal processing

Arti�cial Neural Networks

Scienti�c challenge

In critical applications, reliable computing systems with the ability to detect and correct errors are

required.

2 / 13



Residue Number System (RNS)

In the RNS any number X ∈ [0,M) have unambiguously represented by a tuple of residues xi,
where for all i = [1, n] xi is remainder of the division of X by pi, pi are coprime numbers
(moduli), i.e. xi = X mod pi, M =

∏n
i=1 pi � is the dynamic range.

For numbers A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn) is executed

C = A ∗B = (a1 ∗ b1, a2 ∗ b2, . . . , an ∗ bn) , where ∗ = {+,−,×} .

For a representation of negative numbers, the dynamic range is divided into equal parts, and it

is possible to represent unambiguously any number X satisfying one of the expressions
−M−1

2 ≤ X ≤ M−1
2 for odd M and −M2 ≤ X ≤ M

2 − 1 for even M .

3 / 13



Redundant Residue Number System

To detect and correct an error, two redundant moduli pn+1 and pn+2 are added to RNS, and

the dynamic range of the RRNS will be P =
∏n+2

i=1 pi.

The number X = (x1, x2, . . . , xn, xn+1, xn+2), is valid if X ∈ [0,M) (legitimate range), but in
the case of X ∈ [M,P ) (illegitimate range) it can be said that the number contains an error.

M is represented in the RRNS and it is obvious that M = (0, . . . , 0,mn+1,mn+2), where
mn+1 =M mod pn+1, mn+2 =M mod pn+2.

4 / 13



Scheme for detecting, localizing and correcting errors based on RRNS

3.2

3.1

2.n+2

. . .

2.11.1

. . .

1.n+2

. . .

4

6.2

6.1

5.n+2

. . .. . .

5.1

8

7. . . 9

10.n+2

. . .

10.1 11.1

. . .. . .

11.n+2

Patent RU2653257 �Modular code error detection and correction device�

5 / 13



Convert to RNS

Algorithm 1 Operation mod2n using the

logical AND operator

Input: X = (x1, x2, . . . , xn), 2
n.

Output: X mod 2n.
return X&(2n − 1)

The modeling of the algorithms took place

on a personal computer with a processor

Intel i5 and 24 gigabytes of RAM in the

programming language Python.

0 20 40 60

200

400

600

800

1,000

Degree, n

T
im
e,
n
s

Algorithm 1 n lower bits X%2n

Comparison of methods of �nding the

remainder of the division by module 2n.

6 / 13



Convert to RNS

−5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

50

100

150

200

Degree, n

T
im
e,
n
s

mod (2n − 1) mod2n mod (2n + 1)

Comparison of runtime for moduli set {2n − 1, 2n, 2n + 1}.
7 / 13



Convert from RNS

For X = (x1, x2, . . . , xn, xn+1, xn+2) with moduli set {p1, p2, . . . , pn, pn+1, pn+2} there are
various methods of translation, for example, the method based on the Chinese Remainder

Theorem (CRT), the approximate method based on CRT, the method based on the

Mixed-Radix Conversion (MRC).

CRT

X =

∣∣∣∣∣
n+2∑
i=1

Pi · xi ·
∣∣P−1i

∣∣
pi

∣∣∣∣∣
P

, (1)

where P =
∏n+2

i=1 pi Pi = P/pi,∣∣P−1i

∣∣
pi
� the multiplicative inversion

of Pi by module pi.

Approximate CRT

X

P
=

∣∣∣∣∣
n∑

i=1

xi ·

∣∣Pi
−1∣∣

pi

pi

∣∣∣∣∣
1

=

∣∣∣∣∣
n∑

i=1

xi · ki

∣∣∣∣∣
1

, (2)

where ki =
|Pi

−1|
pi

pi

8 / 13



Convert from RNS

0 10 20 30 40 50 60 70 80 90 100 110 120 130

0

200

400

Dynamic range, bits

R
u
n
ti
m
e,
µ
s

CRT Approx CRT MRC

Comparison of methods of transfer from RNS to positional numeral system.
9 / 13



Scalar product

Algorithm 2 Calculation of the scalar

product

Input: (x1, x2, . . . , xn), (y1, y2, . . . , yn).
Output: S = 〈X,Y 〉.
S=0

for i = 1 to n do

S = S + xi · yi
end for

return S

Algorithm 3 Calculation of the scalar

product with a binary tree

Input: (x1, x2, . . . , xn), (y1, y2, . . . , yn).
Output: S = 〈X,Y 〉.
for i = 1 to dn2 e do
S0,i = x2i−1· y2i−1+x2i· y2i //parallel

end for

for i = 1 to dlog2ne − 1 do

for j = 1 to dn/2i+1e do
Si.j = Si−1,2j−1+Si−1,2j //parallel

end for

end for

return Sdlog2ne−1,1

10 / 13



Scalar product

0 10 20 30 40 50 60 70 80 90 100 110 120 130
650

700

750

800

Dynamic range, bits

T
im
e,
µ
s

Algorithm 2

Algorithm 3

numpy.dot()

Comparison of scalar product algorithms.

11 / 13



Conclusion

The simulation of translation operations in the RNS showed the e�ectiveness of standard

Python language tools.

Hardware-based methods of translation from RNS in software implementation showed

worse results than the method based on the Chinese Remainder Theorem.

It can be concluded that the interaction of FPGA with computers, RNS allows achieving

the required level of reliability of calculations.

Further development of the research will be directed to the application of the residue

number system for arti�cial neural networks and the implementation of the obtained

parallel algorithms by means of GPUs on CUDA.

12 / 13



Thanks for your attention

Viktor Kuchukov Mikhail Babenko

PhD in Physico-mathematical sciences

junior researcher Associate Professor

vkuchukov@ncfu.ru mgbabenko@ncfu.ru

13 / 13


