Comparison of Named Entity Recognition Tools Applied to News Articles

Sergey Vychegzhanin, Evgeny Kotelnikov Vyatka State University, Kirov, Russia

Named entity recognition task

- Named entity recognition (NER) is a task that seeks to locate and classify named entity mentions in unstructured text into pre-defined categories such as the names of persons, organizations, locations and others
- NER serves as the basis for text summarization, machine translation, topic detection, etc.
- Example:

Goal

- The goal of our research a comparative study of well-known tools for named entity recognition in relation to news articles
- We evaluated the precision of named entity recognition tools for news articles in the English and the Russian languages
- We evaluated the processing time for tools
- We highlighted the general and distinctive features of the considered tools

Criteria for choosing the NER tools

- Free license
- Existence of desktop version
- Independence from targeting domain
- Ability to recognize basic entity types:
 - person (PER)
 - organization (ORG)
 - location (LOC)
 - time indicators (TIM)
- Support for the English or the Russian languages

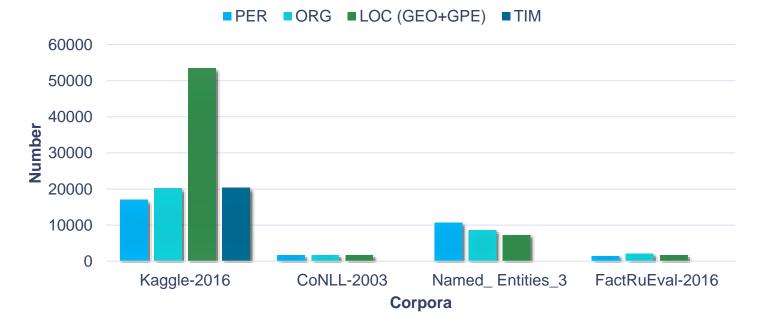
Selected NER tools

- 1. Stanford NER (Stanford Natural Language Processing Group)
- 2. spaCy (Explosion AI)
- 3. NLTK (University of Pennsylvania)
- 4. Polyglot (Rami Al-Rfou)
- 5. GATE (University of Sheffield)
- 6. Flair (Zalando Research team)
- 7. DeepPavlov

(Laboratory of Neural Systems and Deep Learning at Moscow Institute of Physics and Technology)

Characteristics of NER Tools

Tool	Programming language	License	Method	Model	Training corpus	
Stanford	Java	GPL	Conditional Random	english_conll_4class	CoNLL-2003	
NER	Java		Field	english_muc_7class	MUC-6, MUC-7	
		MIT	Bloom embeddings and a residual convolutional neural network	en_core_web_sm	OntoNotes	
				en_core_web_md	OntoNotes, Common Crawl	
spaCy	Python			en_core_web_lg	OntoNotes, Common Crawl	
				xx_ent_wiki_sm	WikiNER	
				ru2	-	
NLTK	Python	Apache License v2.0	Maximum Entropy	_	ACE	
Polyglot	Python	GPLv3	Feedforward neural network	_	Wikipedia	
Flair	Python	MIT	BiLSTM-CRF	_	CoNLL-2003	
GATE	Java	LGPL	Finite state machines and rules in the Jape language	_	_	
	Python	Apache License v2.0	BERT	ner_conll2003_bert	CoNLL-2003	
DeepPavlov				ner_rus_bert	Wikipedia, news data	
				ner_ontonotes_bert_mult	OntoNotes	


Text corpora

- Kaggle-2016 English-language corpus annotated for Named Entity Recognition using GMB (Groningen Meaning Bank) corpus
- CoNLL-2003 collection of English-language news articles from the Reuters Corpus used in 2003 at the Conference on Computational Natural Language Learning (CoNLL)
- Named_Entities_3 Russian-language corpus based on Person-1000 collection, created by Artificial Intelligence Research Center of the Institute of Program Systems of the Russian Academy of Sciences
- FactRuEval-2016 Russian-language corpus which was used in the named entity recognition and fact extraction competition at the conference Dialogue

Characteristics of text corpora

Corpus	Text language	Types of named entities	Number of texts	Average text length, tokens
Kaggle-2016	English	PER, ORG, GEO, GPE, TIM, ART, EVE, NAT	47,959	23
CoNLL-2003	English	PER, ORG, LOC, MISC	1,627	30
Named_Entities_3	Russian	PER, ORG, LOC	1,000	273
FactRuEval-2016	Russian	PER, ORG, LOC	132	463

Statistical distribution of named entities

Evaluation conditions

- 1. Exact matching of boundaries and types of predicted and true entities
- 2. Partial matching of the predicted and true entities

Evaluation metrics

• $P = \frac{TP}{TP+FP}$ (Precision) • $R = \frac{TP}{TP+FN}$ (Recall) • $F1 = \frac{2 \cdot P \cdot R}{P+R}$ (F1-score)

Entity belongs to class C		True		
		Yes	No	
Predict	Yes	TP	FP	
	No	FN	TN	

Results of experiments for English

	Model	F1-score					
ΤοοΙ		Exact matching			Partial matching		
		Kaggle	e-2016	CoNLL-2003	Kaggle	-2016	CoNLL-2003
		3 types	4 types	3 types	3 types	4 types	3 types
Stanford NED	english_conll_4class	0.554	—	0.860	0.663	_	0.886
Stanford NER	english_muc_7class	0.511	0.486	0.611	0.650	0.613	0.683
	en_core_web_sm	0.483	0.452	0.521	0.649	0.619	0.608
cnoCy	en_core_web_md	0.503	0.468	0.570	0.665	0.631	0.659
spaCy	en_core_web_lg	0.496	0.463	0.597	0.660	0.629	0.697
	xx_ent_wiki_sm	0.501	-	0.597	0.637	-	0.695
NLTK	-	0.476	-	0.467	0.616	—	0.555
Polyglot	-	0.476	_	0.467	0.650	—	0.595
Flair	_	0.584	_	0.887	0.691	—	0.904
GATE	_	0.460	0.448	0.528	0.575	0.554	0.598
DeepPavlov	ner_conll2003_bert	0.576	_	0.860	0.691	_	0.901
	ner_ontonotes_bert_mult	0.523	0.475	0.687	0.685	0.637	0.741

Analysis

- 1. F1-score under the condition of exact matching is lower than with partial matching the following reasons:
 - The presence of words preceding a named entity:
 - prime minister John Howard
 - the New York Times
 - in November
 - Excessive or incomplete extraction of the entity:
 - Luxembourg-based Court of First Instance
 - the Neolithic period
 - Danilovsky District of Moscow
 - Extracting extra non-entity characters such as '.', '-', '(', etc.

Analysis

- 2. The most difficult to recognize are the types ORG and TIM, the simplest is the type PER
 - For DeepPavlov on the Kaggle-2016 corpus:
 - $-F1_{PER} = 0.813$
 - $-F1_{ORG} = 0.540$
 - $-F1_{LOC} = 0.703$
 - $-F1_{TIM} = 0.493$
- GATE has the lowest F1-score across all classes, especially in ORG. This tool uses a dictionary in which many organizations are missing
 - $-F1_{ORG} = 0.433$ on Kaggle-2016
 - $F1_{ORG} = 0.382$ on CoNLL-2003

Results of experiments for Russian

		F1-score				
	Model	Exact n	natching	Partial matching		
ΤοοΙ		Named_	FactRuEval-	Named_	FactRuEval-	
		Entities_3	2016	Entities_3	2016	
		3 types		3 types		
spaCy	xx_ent_wiki_sm	0.454	0.418	0.681	0.559	
spacy	ru2	0.214	0.210	0.361	0.307	
Polyglot	-	0.499	0.429	0.674	0.589	
GATE	-	0.299	0.268	0.370	0.342	
DeepPavlov	ner_rus_bert	0.945	0.622	0.973	0.752	
	ner_ontonotes_bert_mult	0.688	0.556	0.816	0.679	

Named entity recognition processing time

		Processing time, sec		
ΤοοΙ	Model	Kaggle-2016	Named_Entities_3	
Stanford NER	english_conll_4class	76,935	_	
Stanioru NER	english_muc_7class	75,723	_	
	en_core_web_sm	298	_	
	en_core_web_md	319	_	
spaCy	en_core_web_lg	327	_	
	xx_ent_wiki_sm	164	13	
	ru2	—	136	
NLTK	—	475	_	
Polyglot	—	107	113	
Flair	—	31,711	_	
GATE	_	87	21	
	ner_conll2003_bert	2,793	_	
DeepPavlov	ner_ontonotes_bert_mult	2,759	497	
	ner_rus_bert	-	465	

Conclusion

- We compared the performance of well-known named entity recognition tools: Stanford NER, spaCy, NLTK, Polyglot, Flair, GATE and DeepPavlov
- Flair allowed to get the best performance for the English language and DeepPavlov for the Russian language
- GATE, Polyglot and spaCy turned out to be the fastest tools and Stanford NER – the slowest tool

Thank you for your attention!