mS=CR 4

Software Engineering Conference Russia 2019

November 14-16
St. Petersburg

Agile Software Development Automated
by Blockchain Smart Contracts

M. Marchesi, M.l. Lunesu, M. Ortu, A. Pinna, R. Tonelli,
University of Cagliari, Italy

Giuseppe Destefanis, Brunel University London, UK
Valentina Lenarduzzi, Tampere Univ. of Technology, Finland

Blockchain »S=CR

-The Blockchain was a technology originally devised to run the
Bitcoin cryptocurrency in a decentralized and secure way

-It is a distributed data structure characterized by:
!data redundancy
!check of transaction requirements before validation
'recording of transactions in sequentially ordered blocks
lownership based on public-key cryptography
limmutability

'a transaction scripting language, associated to the
transactions - the corresponding program is executed by all
nodes

Blockchain for Agile Development »S=CR

We exploit blockchain technology for Agile
Software Development for:

* iImproving productivity

e automating tasks

* Integrating tests

* leveraging Product Owner duties
* agreeing upon conditions

* automating payments

Blockchain for Agile Development »S=CR

* Novel approach to Feature-Driven development
* Blockchain provides:

transparency, identification, non repudiability,
traceability, encryption, ...

 Smart Contracts provide:

clear conditions for stakeholders, check for operations
and conditions, automated test checking, automated
payments, ...

Agile Methodologies .SECR

* Focus on the ability to respond to change quickly and easily.

* Most popular AM is Scrum, followed by Scrum/XP hybrid,
Scrumban, Kanban and others.

* These software development methods offer adaptive planning,
early delivery and continuous improvement.

KANBAN Methodology

” Release ST

User Stories and mS=-CR

Acceptance lTests

* In AMs system requirements are expressed through atomic
iIncrements (Minimum Marketable Features - MMF) or User
Stories (USs)

 USs explicitly describe an interaction among the system to
develop and external actors.

* The development process is guided by these increments.

* Each US is typically provided of one or more Acceptance Tests
(ATs), describing specific scenarios of usage, giving actual
state and inputs, and required output data.

US and Acceptance Tests (2) .SECR

* lterative AMs, such as Scrum, advance by short
iterations (Sprints), assigning to each iteration a set of
USs to implement.

* AMs based on continuous flow, such as Kanban,
proceed by implementing USs through a continuous
flow, aided by the Kanban board.

* In both cases, ATs are crucial to decide if a US has
been correctly implemented or not, and thus Iits
developer(s) can be compensated.

The Role of Product Owner .SECR

* In Scrum, the Product Owner (PO), is the key role for
managing, prioritizing and explaining USs to the development
team.

* The PO is in charge of verifying the implementation of USs and
executing the related ATs.

* |f the PO agrees that a US is correctly implemented, the US is
marked as "done" and can be paid by the customer.

 |f automated ATs related to a US pass, the PO gives (possibly
after a further check) the green light to the compensation of the
team, or of the developer, for completing the US.

Smart Contracts SitEEEekchain WS=CR

 Smart Contracts (SC) represent well defined programs running
oon a blockchain, implementing simple and autonomous tasks

» SC ususally have a well defined purpose and cannot be
modified, they provide services to the Contract callers (or to
contract parties)

 SC are deployed into a Blockchain framework, and their source
code can be checked by all parties

* Blockchain features natively | N ' f g 1
.) < ,f'] P a
implement secure and \ Resnt | > ‘ > S
transparent access to SCs) " © it

SCs and Blockchain (2) .SECR

Smart Contracts interactions occurs by mean of messages,
sent through blockchain transactions

Transactions may be used to execute Smart Contracts code, or
to perform payments in the Blockchain cryptocurrency

Users are identified by blockchain addresses, and can be other
SCs as well

Smart Contracts can identify the sender of the message, and
execute code with different policies settings for different users

10

We propose a system for: »S=CR

* Relieving the duties of the PO for certifying the
correctness of the process outcome, delegating them
to Smart Contracts written in Solidity language and
deployed on the Ethereum Blockchain

* Automating some specific tasks
* Asseverating and validating Acceptance Tests

* Performing payment in Ether cryptocurrency, based on
the agreements and on correct US implementation

11

Main ideas mS=-CR

 US-driven development is a contract between the customer and the
developer team, supervised by the PO

* A US is considered completed (and thus should be paid) when its
ATs pass, and the PO asseverates the completion

* ATs can (and should) be automated, so that:
- AT inputs and initial system state can be precisely defined
— The prescribed result of AT execution can be uniquely defined

* Developers must not know in advance the ATs and their result (to
avoid opportunistic behavior)

- However, they can know in advance the hash digest of the result

12

Main ideas (2) .SECR

SCs on a blockchain (Ethereum) can be used to manage the process
They are transparent, and can be checked by all parties

Payment can be made by a SC using Ethers or tokens having a
given monetary value

It is duty of the customer to provide Ethers or tokens to the SCs

The PO manages the system, entering the addresses (identity) of the
developers, the USs and their ATs, with the hash of their results

The PO assigns the USs to developers (or these subscribe to USs)

Once a US is completed the developer runs its ATs, computes the
results and their hash digests, and sends them to the SC

13

Main ideas (3) .SECR

* |f the two hashes overlap for all ATs, the SC can directly pay the
developer, or the final payment may require a final PO's approval

* |f the developer fails to provide the correct hash digest of an AT, the
US is not considered done. S/he is allowed to provide it later

* The SCs code cannot be changed and transactions registered in the
blocks can trace timestamp and all operations performed by SCs

* All transactions in the Blockchain public ledger can easily be verified
and are immediately available providing full transparency to all
process actors

14

System architecture »S=CR

* We used ABCDE - Agile BlockChain Dapp Engineering for
architecture design (presented in a talk at SECR 2018):

- UML diagrams and scenarios for describing the system are used
to represent both SCs and App parts of the system

* The application we propose is composed by:

1) a traditional software system, running on servers/mobile devices,
communicating with users and external devices;

2) the SCs running on the Blockchain.

15

Actors of the System .SECR

Customer: s/he owns the SCs implementing the system, enables
the PO and the team members, specify the rules for automated
compensation, provides Ethers or tokens

Product Owner: s/he specifies and manages the USs and the ATs,
including the correct inputs and outputs of the Ats. S/he certifies the
correct implementation of a US, if needed.

Developer: a team member who writes the US and related ATs, and
is entitled to be paid for her/his work.

Testing Framework: an external system enabling writing and
execution of ATs, and the verification that they pass.

16

Use Case Diagram .SECR

create the system
create a project

make a payment

% / add Developer

T e
Customer

o P e >,

Subscribe US
‘______,__

Developer \
accept a US

verify that AT passes

/// Testing Framework

Evolution of the state of a US .SECR

AT run

— o —
definition completed some AT failed

PO accepts the US all ATs pass

payment made

paid and closed
automated payment

* A US is created, and is provided with one or more ATs, whose
correct result can be coded in a file, whose hash digest is written by
the PO in the blockchain, using her/his cryptographic credentials.

18

Evolution of the state of a US .SECR

The developers do not know the content of the file with AT results, but only its
hash digest.

— they cannot fake the AT result, by directly writing the expected result in the AT
code

USs completely implemented by a developer are committed and the related
ATs are run

When the tests pass, they generate a result file which must be identical to the
original one, and hence with the same hash digest.

This triggers the run of SC code on the blockchain, which computes and
compares the two hashes, certifying the US validation if they are the same

The hashes of AT results can be sent to the SC by the developer, or
automatically by the test suite

19

The Blockchain System e

We implemented the requirements using two SCs, "projectManagement”
and "userStory"

ProjectManagement represents a software project whose USs have to be
developed, tested and eventually accepted.

This contract can be deployed and owned by the Customer, who can
appoint the PO, and can deposit an Ether amount to pay the
compensation of developers who create USs whose ATs pass.

Using this contract, the PO can add USs, seal US, and approve the USs
s/he deems are completed.

20

The Blockchain System e

UserStory: a new contract userStory is created by the PO for each US of
the managed project with the description of the US and the list of its ATs

The Developer can access the list of not yet validated USs tests and read
the information related to the US and its ATs

For each test, s/he can submit the hash code of the result of the test, to
certify it passed

The SCs projectManagement and userStory are linked to each other: the
PO deploys a userStory SC whenever s/he needs to add a new US to a
given project.

After the deployment, the PO will add the new US to the
projectManagement SC, which will able to access the US contract
through its Ethereum address.

21

The UML modified class diagram

«library contract»
Ownable

owner: address

«modifier»onlyOwner()

projectManagement

numberOfStories: uint
productOwner: address

nrofProd: uint

«mapping[uint]»

deposit()

setCustomerApproval()

addUserStory()
sealUserStory()

setPOApproval()

payDeveloper()
showinfoUsS()

setAutoApproval()

modifyUS()

«enum»
UsStates

«enum»
TestStates

notPaid
paid

notPassed
passed

|« M usersStories

«Struct»

«contract»
usersStory

numerOfTests: unit
sealed: bool
productOwner: address
paymentContract: address
usDescription: string

usliD: uint

userStoryData

name: string
developer: address
state: UsStates
compensation: uint
sealed: bool

approval

«address» usContract

«Struct»
Approvals

poApproval: bool
customeApproval: bool
autoApproval: bool

sealing()
addTest()
addDescription()
toDoTests()
hashing()
testinfo()
countNotPassed()

«mappinguint]»

0. usTests

«Struct»
aTest

testResultHash: bytes32
description: string
testState: TestStates

UML Sequence diagram representing the
definition of a US

<==<coniract=>>

ProjetManagement

Cuvtp er 1 create

2-enablePO

PmAddress PmAddress 3. create
L e e e S o=t > > ==zcontract==

UserStoryContract

4 setPmAddress{pmAdd ress-Jl

USaddress
5:addUserStory(USaddress)

-

6:setUSId(uslid)

loop) 7:addTest(hashOfHash

3 lin
9:sealUserStory(usid) o sealing()

UML Sequence diagram representing the =
completion and acceptance of a US. .S—CR

<<coniract=> <<contract>>

ProjetManagement UserStoryContract

[toDoTestListi=empty]

toDoTests()

toDoTestList
___________________________ >

submitHash(hash_ dTest)

setAutoApproval(USid)

payDeveloper(usiD

setPOApproval(USid)
setPOApproval(USid) -

transfer(wage)

Implementation .SECR

We adopted the Behavior-Driven-Development (BDD) Agile
Methodology to define, implement and check the automated
Acceptance Tests

We implemented the SCs to verify the passing of the test related to
a given user story and used to transfer the agreed amount of
cryptocurrency to the blockchain address of the developers team.

The prototype has three main components:
- the Smart Contract deployed on an Ethereum testnet
- a Web application to be used by the Product Owner

- the BDD framework used by developers

25

Implementation .SECR

The Product Owner meets the team to agree on a set of user
Stories to develop and on the related Acceptance Tests (ATs)

The AT must be verified according to the BDD scheme and on the
chosen test automation tool

Each AT is written by the PO into a Smart Contract with the correct
answer masked by an hashing fingerprint and deployed on the
blockchain.

For each developed User Story, the team implements one or more
ATs using the BDD framework agreed upon with the PO

26

Implementation .SECR

* When a test is executed, the team, provided with a blockchain
address and blockchain credentials, accesses the ABI exposed by
the smart contract and sends the evaluated answer through a
blockchain transaction

* The SC hashes the team’s blockchain message and automatically
checks the hash against the value provided by the Product Owner

« The SC can send back the answer to the AT, which passes only if
the hashes match

27

Implementation .SECR

* Let us consider the following simple feature expressed using BDD
structure:

Feature: Simple maths
In order to do maths
As a developer
I want to increment variables

Scenario: easy maths
Given a variable set to 1
When I increment the variable by 1
Then the variable should contain 2

Scenario Outline: much more complex stuff
Given a variable set to <var>
When I increment the variable by <increment>
Then the variable should contain <result>

Examples:
incremen

{2
5

1234 28
o

Implementation .SECR

* This Feature can be directly coded using Cucumber.js framework:

// features/support/world. js
const { setWorldConstructor 3} = require('cucumber ')

class CustomWorld {
constructor () {
this.variable =

3

1
2
3
4
5
6
7
8

setTo(number) {
this.variable

by

incrementBy (number) ({
this.variable += number

by
by

setWorldConstructor (CustomWorld)

Implementation .SECR

e CustomWorld is the class under test. The Given, When, Then clauses
described in the Feature "Simple maths™ are directly coded in a file named

steps.js.

 Cucumber.js executes the matching of what is written in natural language
in the Feature and what is coded in the steps.js file.

// features/support/steps.js

const { Given, When, Then } = require('cucumber ')

const { expect } = require('chai')

Given('a variable set to {int}', function(number) {
this.setTo(number)

1)

When('I increment the variable by {int}', function(number

3 &

this.incrementBy (number)

1)

Then('the variable should contain {int}', function(number

) B

expect(this.variable).to.eql(number)

3D

1
2
3
4
5
6
7
3

Implementation .SECR

The framework automatically matches the Feature written in natural
language (the clauses Given, Then and When) and the code
Implemented in Javascript.

The first scenario contains one assertion (the variable should
contain 2), hence this generates one AT

The second scenario contains a table with three matches (the
variable should contain <result>) using the placeholder <result> for
the values in the table.

The second scenario generate three ATs.

Once the ATs are expressed using BDD, the test failure or success
can be automatically checked by a Smart Contracts.

31

contract userStory({

enum TestStates {notPassed, passed}

struct atest{ //to be setted by
bytes32 testResultHash; /

D f test result
string description;
TestStates testState;

b

mapping(uint => atest) usTests;

//global wvariable

uint numberofTests;

bool sealed = false;

address productOwner ;

address paymentContract;
string public usDescription =
description”;

uint uslID=0;

constructor (address pmAddress) public{
productOwner = msg. sender ;
paymentContract = pmAddress ;

and the related test 1ID

function submitHash(bytes32 myHash, uint idTest)
ifSealed ifNotPassed(idTest) public {...3}
function getPaymentContract() wview public returns(
address){...}

function getusID() view public returns(uint
userStoryIDY{. ..}

Results B SECR

We used our prototype to execute a case study where PO,
Customer and Developers team agreed on executing a set of ATs
on the USs of software produced using Scrum methodology.

The PO inserted the hashes of the correct expected results for the
acceptance tests into SCs deployed in the Ropsten Ethereum test

These SCs are managed by a second SC which was used as a
master of the first one, allowing the counting of the passed tests
and the management of the reward in cryptocurrency.

The team had a Ropsten Ethereum account related to a blockchain
address provided with the amount of Ethers needed to perform the
blockchain transactions for checking the ATs on the SCs

33

Results B SECR

* Depending on the AT results sent with a message by the team, the
SC answered a return value reporting the failure or success of the
test.

* After the team successfully completed all the tests of a US, they
were automatically rewarded by the agreed amount of
cryptocurrency in their own Ropsten blockchain address

* The PO asseverated the payment by the master SC once all the
acceptance tests had passed

34

Conclusion .SECR

* The results show that our prototype could easily be used to leverage
part of PO duties in a Scrum, or a Lean-Kanban agile process

 Several parts of the process, from management and verification of
acceptance tests, to the insertion of new user stories, to the final
payment of development team can be automated

* The native nature of the blockchain as a trustless technology perfectly
suites the spirit of mutual trust of Agile Manifesto, since the
blockchain can “create trust”, allowing different parties to make a
transaction “without relying on trust”

35

