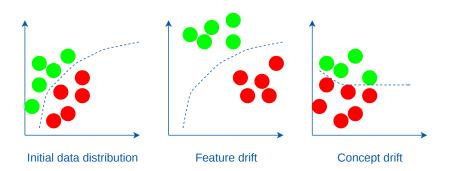
Domain adaptation by proactive labeling

Ryndin M.A., Turdakov D.Y. Thursday 5th December, 2019

Distribution drifts



- Data and target variable distribution in real sources is not stationary.
- SentiRuEval2016.

- Initial labeled data and unlabeled data later production setup.
- No prior knowledge if drifts present and about nature of drifts.
- Keep model perfomance ~in-domain.
- Algorithm can call for labels for some of data.
- Labeling cost shoud be minimized.

Solution methods

Online learning

- Incremental learning, learning new model over time, etc.
- Requires target variable for all examples.

Domain adaptation

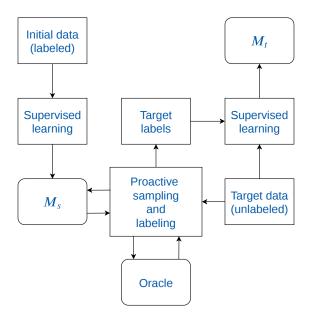
- Optimal transport, SDAE, DANN, self-training, etc.
- Concept drift.

Active learning

- Multiple re-training iterations.
- No knowledge of prior data.

ISP

Proposed method

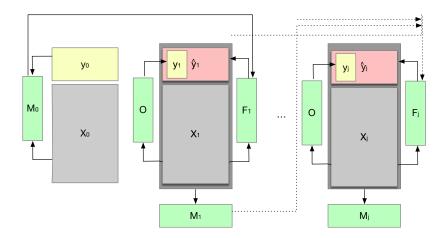


ISP RAS

Here and further: binary classification example

- Adding example x to training set with probability $C = |0.5 M_s(x)|.$
- If C > threshold, than label x with $round(M_s(x))$.
- Else label with oracle.

Making proposed algorithm online



Here: O – oracle, F – models from previous steps

RAS

ISP

- Using every previously built model for labeling.
- Now *C* is mean confidence over all models.
- Label with oracle or models based on confidence and agreement.

ISP

- Amazon review.
- + B books (~ 9m.), E electronics (~ 2m.), K kitchen (~ 1m.)
- Fasttext + LSTM / tf-idf + logistic regression.
- Krishnapuram et al., "Online Domain Adaptation by Exploiting Labeled Features and Pro-active Learning" (further [1]).

Source	Target	Accuracy, [1]	Accuracy,	Accuracy,	Accuracy,
			with adaptation,	no adaptation,	with adaptation,
			LSTM	LSTM	log.reg.
В	E	78.4	90.9 ± 0.2	88.6 ± 0.1	87.5 ± 0.2
	K	78.6	89.8 ± 0.4	86.5 ± 0.2	86.6 ± 0.3
E	В	77.8	$\textbf{90.1}\pm\textbf{0.2}$	87.0 ± 0.1	86.8 ± 0.2
E	K	86.0	90.2 ± 0.3	89.1 ± 0.2	86.3 ± 0.3
К	E	70.1	91.5 ± 0.3	88.9 ± 0.1	85.5 ± 0.2
	В	73.2	89.3 ± 0.1	84.8 ± 0.1	84.7 ± 0.2

- Number of *M*_s labeled examples is 4 time greater than oracle labeled on avarage.
- Number of incorrectly labeled examples is 5 % of total labeled examples on avarage.

Experiment	Accuracy	Cost
$B \rightarrow E$,	90.9 ± 0.2,	34000,
$E \to K$	90.2 ± 0.3	52000
$B \rightarrow E \rightarrow K$	90.9 ± 0.2,	34000,
$D \rightarrow L \rightarrow K$	90.0 ± 0.3	8000

- Further cost decrease is slower.
- Number of incorrectly labeled examples stays approximately the same.