
Applications of finite state machines

Aleksey Cheusov
vle@gmx.net

Minsk, Belarus, 2019

What is this presentation about?

◮ Finite State Automata (FSA) and Weighted Finite State
Automata (WFSA)

◮ Regular language and Regular expressions libraries

◮ Deterministic (DFA) and Non-deterministic Finite State
Automata (NFA)

◮ Moore Machines and Mealy Machines

◮ Finite State Transducers (FST) and Weighted Finite State
Transducers (WFST)

◮ Algorithm of converting NFA to DFA

◮ DFA minimization algorithm

◮ Applications of all of the above

What is NOT this presentation about?

◮ Chomsky grammar hierarchy

◮ Context Free Grammars

◮ Context Sensitive Grammars

◮ Turing Machines

◮ Nested stack automata

Definition of FSA (non-deterministic FSA also known as

NFA)
A finite state automaton is a 5-tuple < I ,S ,Q,F , δ >. Sometimes
it is called “acceptor”.

◮ I is the input alphabet, a finite non-empty set of symbols.
◮ S is a finite, non-empty set of states.
◮ Q is the set of start states, Q ⊆ S .
◮ F is the set of final states, F ⊆ S .
◮ δ is the transition relation: δ ⊆ S × I × S (or, alternatively,

δ : S × I → 2S)

Example: < {a, b}, {s1, s2, s3}, {s1}, {s3}, δ >

s3

s1

a

s2

a

b

FSA for software design and testing
Summator:

template <typename T> class isummator {
virtual void set a(T a) = 0;

virtual void set b(T b) = 0;

virtual void process() = 0;

virtual T get result() = 0;

virtual void clear() = 0;

}

result_is_ready

get_result()

initial

clear()

A_B_are_ready

set_a(a)

set_b(b)

clear()

A_is_ready

set_a(a)

B_is_readyset_b(b)

clear()

set_a(a)

set_b(b)clear()

set_b(b)

set_a(a)

process()

clear()

set_a()

set_b()

FSA for software design and testing

set a set b process

initial A is ready B is ready Error!
A is ready A is ready A B are ready Error!
B is ready A B are ready B is ready Error!
A B are ready A B are ready A B are ready result is ready
result is ready A B are ready A B are ready Error!

Table: Transition table, part 1

get result clear

initial Error! initial
A is ready Error! initial
B is ready Error! initial
A B are ready Error! initial
result is ready result is ready initial

Table: Transition table, part 2

IMHO, this kind of FSA for objects’ states is a part of Contract Programming
paradigm implemented in Eiffel programming language.

Language of FSA

The language formed by FSA consists of all distinct strings that
can be accepted by FSA, i.e. sequences of input symbols that start
in a start state and ends in a final state. L(fsa) = {(ab)na|n ≥ 0}

s3

s1

a

s2

a

b

Regular language
The collection of regular languages over an alphabet Σ is defined
recursively as follows:

◮ The empty language ∅ and the empty string language {ǫ} are
regular languages.

◮ For each a ∈ Σ, the singleton language {a} is a regular
language.

◮ If A and B are regular languages, then A ∪ B (union), A • B
(concatenation), and A∗ (Kleene star) are regular languages.

◮ No other languages over Σ are regular.

A formalism described above gives us so called “regular
expressions”.

Theorem: Regular Language and Finite State Automaton are
equivalent formalisms. That is, for each regular language the
equivalent FSA exists and vise versa.
Theorem: Regular languages are closed under concatenation,
union, kleene star, intersection and complementation.

Deterministic FSA (also known as DFA)

A deterministic finite state automaton is a 5-tuple
< I ,S , q,F , δ >.

◮ I is the input alphabet, a finite non-empty set of symbols.

◮ S is a finite, non-empty set of states.

◮ q is the start state, q ∈ S .

◮ F is the set of final states, F ⊆ S .

◮ δ is the state-transition function: δ : S × I → S

Theorem: NFA and DFA are equivalent formalisms.
Theorem: DFA can be exponentially larger than equivalent NFA.
Theorem: There is only one minimal (with the minimal number of
states) DFA.

NFA to DFA conversion algorithm

Algorithm 1: nfa2dfa algorithm AKA “Subset construction”

input : NFA = < I , S ,Q,F , δ >
output: DFA = < I , S ′, q′,F ′, δ′ >
δ′ := ∅, q′ := {s|s ∈ Q}, S ′ := {q′}
seen := {q′}, queue := [q′]
while queue 6= ∅ do

src states ← queue
for i ∈ I do

trg states := {strg |(ssrc , i , strg) ∈ δ, ssrc ∈ src states}
if trg states 6= ∅ then

δ′ ← (src states, i , trg states)
S ′ ← trg states
if trg states /∈ seen then

queue ← trg states
seen← trg states

F ′ := {state set ∈ S ′|∃s ∈ state set, s ∈ F}

Example of NFA and equivalent DFA
Simple NFA

s3

s1

a

s2

a

b

Equivalent DFA

{s2,s3}

{s1}

b
a

Example of NFA and equivalent DFA
NFA

s1

s3
a

s2
a

s4

c
b

d

Equivalent DFA

s1,s3

s2,s3

a
s4

c

s3
b

c

s1

a

c
d

DFA Minimization, Brzozowski algorithm

DFA minimization is the task of transforming a given
deterministic finite automaton (DFA) into an equivalent DFA that
has a minimum number of states.

Let’s define two operators:

◮ R – revert operator. L(R(fsa)) = {inverse(w)|w ∈ L(fsa)}

◮ D – nfa to dfa conversion.

Algorithm: MinDFA = (D ◦ R ◦ D ◦ R)NFA
Note: Unlike others Brzozowski algorithm builds MinDFA for
NFA!

Other algorithms are described in “A Taxonomy of Finite
Automata Minimization Algorithms”, Bruce Watson, 1993

Algorithm of match with a help of DFA

Algorithm 2: Match with a help of DFA. Complexity: O(n)

input : DFA = < I ,S , q,F , δ >,Text = [t1, t2 . . . tn], ti ∈ I
output: true or false
state := q
for i from 1 to n do

if δ is defined on (state, ti) then
state := δ(state, ti)

else
return false

end

end
return (state ∈ F)

Algorithm of match with a help of NFA

Algorithm 3: Match with a help of NFA. Complexity: O(n∗|S |)

input : NFA = < I ,S ,Q,F , δ >,Text = [t1, t2 . . . tn], ti ∈ I
output: true or false
states := Q
for i from 1 to n and states 6= ∅ do

states := {trg |(src , ti , trg) ∈ δ, src ∈ states}
end
return (∃s ∈ states, s ∈ F)

Search and submatch operations

Questions:

◮ algorithm of search: left-most longest (awk, grep, sed) or...

◮ algorithm of submatch: POSIX or...

◮ syntax for matching portions of regexps

◮ support of regexp negations or intersections

Article: “Efficient submatch addressing for regular expressions”,
Master’s Thesis, Ville Laurikari
https://laurikari.net/ville/regex-submatch.pdf

Substring search and FSA

Well known algorithms:

◮ Knuth-Morris-Pratt algorithm. Task is a search for
occurrences of a fixed word W within a main text string T .
Complexity: (O(| W | + | T |)). Idea is to preprocess word
W and build some table-like data structure that helps us to
reuse partially matched word, thus, processing each character
in T only once..

◮ Aho-Corasick algorithm. Task is to locate elements of a
finite set of strings D within an input text T . Complexity:
O(| D | + | T |).

◮ Note: These algorithm are actually equivalent to matching
with a help of DFA built from search pattern(s).

Example: DFA for substring search
Pattern: “abccab”
Regexp for substring search: “.*abccab”
DFA:

s7

s1

b

s2

a

s4

c

b

c

a

c

a
s3b

b

a
c

b

a

s5

c

b

c

s6

a

b

c

a

Alphabet – ASCII or Unicode symbols

High-performance regexp engines:

◮ Ken Thompson’s first implementation (1968)

◮ GNU libc regcomp(3)/regexec(3), GNU grep

◮ Google re2 library (re2j – Java reimplementation), Yandex PIRE library

◮ nawk (by Brian Kernighan), libtre (Finland student :-)), libuxre (Solaris
OS), NetBSD libc regcomp(3)/regexec(3)

Regexp engines that suck a lot are below. They do not use FSA at all due to
support of backreferences! So, they have exponential complexity of match and
search.

◮ Perl5,6 regexps

◮ Java SDK regexps

◮ PCRE and huge amount of software based on PCRE

◮ Python, Ruby, PHP...

◮ librxspencer (by Henry Spenser, author of a crappy book...)

Very interesting article: https://swtch.com/ rsc/regexp/regexp1.html, also
have a look at regexp{2,3,4}.html.

Alphabet – part-of-speech tags, e.g. PENN tagset

PENN tags are: DT, JJ, NN, NPS, VBZ . . .
POS-tagged sentence: Using/VBG italics/NNS ,/, bold/JJ
or/CC underlined/JJ words/NNS can/MD change/VBP the/DT
perception/NN of/IN the/DT reader/NN ./.
Regexp for matching noun phrase:
(DT? ((JJ ,)? JJ CC JJ)? ((NN | NNS)+ CD? | NP | NPS)
Extracted noun phrases:

◮ italics

◮ bold or underlined words

◮ the perception

◮ the reader

Alphabet – set of sets of words

Task: match of american or UK addresses
Regexp:[Building] PoBox City State PostCode [Phone] [
Country]
where

◮ Building: <Number><Token><BuildingType>

◮ Number: ’\d+(-\d+)*[a-zA-Z]*’

◮ BuildingType: Plaza or Tower or ...

◮ Pobox: PO Box or P.O. Box or P.O. BOX or ... followed by
Number

◮ City: New York or Boston Washington or ...

◮ State: Kentucky or Nevada or ...

◮ Country: USA or US or United States of America or ...

◮ PostCode: ’\d{5}’

◮ ...

Alphabet – set of words specified exlicitly or by regular

expression

Algorithm of NFA construction – same as for alphabet with
symbols but word ids are used as input weights

Algorithm of DFA construction – there is some problems with
DFA. It may happen if some words are a part of regexps language,
e.g. Number or Token. Solution exists! ;-)

Problems: Some real words can be a part of more than one token
type, e.g., Token or Country. Or we may want to treat the
sequence of words as a single token, e.g., New York, or Great
Britain.

Example: Complex word-based regexp

Input alphabet: {BEZ , JJ,DT ,NN,NP ,NP City , ”city”}
Regexp: NN City ”city” ? BEZ DT ? JJ NN +
FSA equial to Regexp:

end

NN

start

p1NP_City

p2NP_City

"city" p3
BEZ

p4BEZ

DT

p5
JJ NN

Example: Input for complex word-based regexp

endstart s1
London/NP

London/NP_City
s2

is/BEZ
s3

a/DT
s4

global/JJ leader/NN

end
start

s1

New York/NP_City

New York/NP

s5

New/JJ s2
is/BEZ

s3
a/DT

s4
global/JJ leader/NN

York/NP

York/NP_City

endstart s1
Mexico/NP_City

Mexico/NP
s2

city/NN

"city"
s3

is/BEZ
s4

a/DT
s5

global/JJ leader/NN

Alphabet – set of sets of words, regexps and different kinds

of predicates

Match algorithm: intersection of two finite state automata
(regular languages) with a help of modified nfa2dfa algorithm.

end,endstart,start p2,s1
London/NP_City

p3,s2
is/BEZ

p4,s3
a/DT

p5,s4
global/JJ leader/NN

end,endstart,start p2,s1
New York/NP_City

p3,s2
is/BEZ

p4,s3
a/DT

p5,s4
global/JJ leader/NN

end,endstart,start p1,s1
Mexico/NP_City

p2,s2
city/"city"

p3,s3
is/BEZ

p4,s4
a/DT

p5,s5
global/JJ leader/NN

FSAs for “divisible by 2” and “divisible by 3”

Divisible by 2

start end
0

0

1

Divisible by 3

odd0

even0
0

even1
1

0

odd2
1

odd1 0even2

1

1

0
1

0 1
0

FSA for “divisible by 6”

L(div6) = L(div2) ∩ L(div3)

odd0

even0

0
even1

1

0
odd2

1

start
0

odd1 0
even2

1

1

0

1

0 1

0

For building an intersection of two automata we can use nfa2dfa
procedure. As a result we obtain DFA.

FSA for “divisible by 2 but not by 3”

L(div6) = L(div2) \ L(div3)

odd1

even1
0

even2
1

odd2 0

even0

1

0

odd0
1

1

0
start

0
1

01

0

For building a subtraction of two automata we can also use
nfa2dfa procedure. As a result we obtain DFA.

Moore and Mealy machines
Definition: A Moore machine is a 6-tuple < I ,O,S , q, δ, λ >.

◮ I is the input alphabet, a finite non-empty set of input symbols.

◮ O is the output alphabet, a finite non-empty set of output symbols.

◮ S is a finite, non-empty set of states.

◮ q is the start state, q ∈ S .

◮ δ is the state-transition function: δ : S × I → S

◮ λ is the output function: λ : S → O

Definition: A Mealy machine is a 6-tuple < I ,O,S ,q, δ, λ >.

◮ I is the input alphabet, a finite non-empty set of input symbols.

◮ O is the output alphabet, a finite non-empty set of output symbols.

◮ S is a finite, non-empty set of states.

◮ q is the start state, q ∈ S .

◮ δ is the state-transition function: δ : S × I → S

◮ λ is the output function: λ : S × I → O

Note: In practice we often work with partially defined DFA, Moore and Mealy
machines, that is, automata with partially defined transition function.

Moore and Mealy machines
Definition: Language of Moore/Mealy machine is L(m) = {(si , so) | a path
from start state q produces so ∈ O∗ for si ∈ I ∗ input)}.
Note: Moore and Mealy machines are equivalent formalisms.
Example:

s2/0

s1/00

s3/1
1

0

s6/21
s4/1 0s5/2

1

1

0
1

0 1

0

Example:

s2

s10/0

s3
1/1

0/0

s61/2
s4 0/1s5

1/2

1/0

0/1
1/0

0/2 1/1

0/2

Applications of Moore and Mealy machines. Match

multiple regexps

Task: We have a number of regexps and want to know, which one (potentially
more than one!) match the specified text.
Solution1: 1) Mark finite state of regexp1 with 1, regexp2 with 2 etc. Also
mark all other states with empty output symbol. 2) At the end of match
operation, analyse output weight of states the match operation ends in.
Solution2: Perform nfa2dfa operation and assign the set of finite states that
correspond to original regexps to the output weight of Moore machine. For
example output alphabet for Moore machine that matches three regexps may
be {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Applications of Moore and Mealy machines. Match

multiple regexps
Regexps (I = {a, b})

◮ a(a | b)∗

◮ (a | b) ∗ a

◮ a(a | b) ∗ a

0

2

4

1/1
a

a|b

3/2a

5
a

a|b

a|b

6/3
a

(a) Non-deterministic FSM

0

5/{1,2}

a

3

b

1/{1}
b

b

2/{1,2,3}
a

b

a

b

4/{2}
a

b

a

(b) Deterministic FSM

Figure: Matching three regexps with a help of Moore machines

Weighted finite state machine and applications

Definition: Weighted finite state automaton is a 6-tuple
< I ,S ,Q,F , δ, ω >.

◮ I is the input alphabet, a finite non-empty set of symbols.

◮ S is a finite, non-empty set of states.

◮ Q is the set of start states, Q ⊆ S .

◮ F is the set of final states, F ⊆ S .

◮ δ is the transitions relation: δ ⊆ S × I × S

◮ ω : δ → R

ω may be distances, probabilities, penalties etc., even not limited
to R.

Weighted finite state machine and applications

Information extraction (IE) is the task of automatic extraction
of structured information from unstructured and/or
semi-structured machine-readable documents.
Named Entity Recognition (NER) is an information extraction
technique to identify and classify named entities in text.
Example: Alex/S-PER is/O going/O with/O Marty/B-PER
A./I-PER Rick/E-PER to/O Los/B-LOC Angeles/E-LOC
So called BIOES notation is used for mark up. There are also BIO
and IO notations.
Solution: Hidden Markov Models (HMM), Maximum Entropy
Markov Model (MEMM), Conditional Random Fields (CRF),
Bi-directional LSTMs and other techniques are used.
Alternative solution: next slide :-)

Weighted finite state automata for BIOES notation

out

S|O // P(*)

in
B // P(B)

E // P(E)

I // P(I)

(a) WFSA for single-label
extraction

out

S-LOC|S-PER|O // P(*) in-LOC
B-LOC // P(B-LOC)

in-PER

B-PER // P(B-PER)

E-LOC // P(E-LOC)

I-LOC // P(I-LOC)

E-PER // P(E-PER)

I-PER // P(I-PER)

(b) WFSA for two-label
extraction

Figure: Weighted finite state automata for BIOES notations

Approach: Independent classification of each token, then extraction of correct
sequences using FSA shown above. Solution 1: Maximum joint probability of Bi , Ii ,
Oi , Ei , Si , i.e., product of P(*) along the path. Solution 2: Minimum sum of
penalties along the path, i.e., sum of subtraction of selected probability and maximum
probability for each token. Note: Best path can easily be found with a help Viterbi
algorithm. Note: Advantage of this approach is that we can easily set a threshold for
entity extraction, for example, product of B, I and E labels. Thus, we can balance
between Precision and Recall.

Weighted finite state automata for BIOES notation

outB

out1S|O // P(*)

in1

B // P(B1)

outE
out2

S|O // P(*)

in2

B // P(B2)

out3S|O // P(*)

in3

B // P(B3)

out4

S|O // P(*)

S|O // P(*)

in4

B // P(B3)
S|O // P(*)

E // P(E1)

I // P(I1)

E // P(E2)

I // P(I2)

E // P(E3)

I // P(I3)

E // P(E4)

Figure: BIOES WFSA for single-label 5-word input

outEoutB out1
S_PER1|S_LOC1|O // P(*)

in_PER1

B_PER1 // P(B_PER1)

in_LOC1B_LOC1 // P(B_LOC1)

out2
S_PER2|S_LOC2|O // P(*)

in_PER2

B_PER2 // P(B_PER2)

in_LOC2
B_LOC2 // P(B_LOC2)

out3
S_PER3|S_LOC3|O // P(*)

in_PER3

B_PER3 // P(B_PER3)

in_LOC3
B_LOC3 // P(B_LOC3)

out4
S_PER4|S_LOC4|O // P(*)

in_PER4
B_PER4 // P(B_PER4)

in_LOC4B_LOC4 // P(B_LOC4)

S_PER5|S_LOC5|O // P(*)

E_PER1 // P(E_PER1)

I_PER1 // P(I_PER1)

E_PER2 // P(E_PER2)

I_PER2 // P(I_PER2)

E_PER3 // P(E_PER3)

I_PER3 // P(I_PER3)

E_PER4 // P(E_PER4)

E_LOC1 // P(E_LOC1)

I_LOC1 // P(I_LOC1)

E_LOC2 // P(E_LOC2)

I_LOC2 // P(I_LOC2)

E_LOC3 // P(E_LOC3)

I_LOC3 // P(I_LOC3)

E_LOC4 // P(E_LOC4)

Figure: BIOES WFSA for two-label 5-word input

Finite state transducer

Definition: A finite state transducer is a 6-tuple
< I ,O,S ,Q,F , δ >.

◮ I is the input alphabet, a finite non-empty set of symbols.

◮ O is the output alphabet, a finite non-empty set of symbols.

◮ S is a finite, non-empty set of states.

◮ Q is the set of start states, Q ⊆ S .

◮ F is the set of final states, F ⊆ S .

◮ δ is the transition relation: δ ⊆ S × (I ∪ {ǫ})× (O ∪ {ǫ})× S
where ǫ is the empty string.

Note: Weighted FST is defined the same way as WFSA.
Applications of WFST: speech recognition, speech synthesis,
optical character recognition, machine translation, a variety of
other natural language processing tasks including parsing and
language modeling, image processing and computational biology.
WFST Guru: Mehryar Mohri

OCR CUSIP Correction

CUSIP is a nine-character alphanumeric code that identifies a
North American financial security for the purposes of facilitating
clearing and settlement of trades.
Task: CUSIP is extracted from PDF and TIFF documents which
are OCRed first. The problem is OCR leads to huge amount of
errors. Obviously, quality of extraction of busines information such
as amount of money, currencies, CUSIPs, IBANs, BICs etc. is
extreamly important. So, our goal is to correct incorrectly OCRed
CUSIPs.
Dataset: A list of pairs (extractedCUSIP , correctCUSIP).
CUSIP is described here: https://en.wikipedia.org/wiki/CUSIP
Note: CUSIP has a check sum.

OCR CUSIP Correction. Dataset

extracted correct comment

42884VAN1 42884VAN1 everything is correct
42884VAN1 42804VAM3 N → M
D0100UAE2 00100UAE2 D → 0
09179FAS1 09179FAS1 everything is correct
D9l79FASi 09179FAS1 i → 1, l → 1, D → 0,
256684BD8 256604BD0 8 → 0
42884VAM3 42804VAM3 8 → 0
8485OXAB8 84850XAB8 O → 0

... ...

Table: Dataset for OCR CUSIP correction

CUSIP check sum

Algorithm 4: Calculate 9th CUSIP character (check sum)

input : CUSIP characters cusip[i], 1 ≤ i ≤ 8
output: 9th CUSIP character which is a check sum
sum := 0
for 1 ≤ i ≤ 8 do

c := cusip[i]
if c ∈ {”0”, ”1” . . . ”9”} then

v := numeric value of the digit c
else if c ∈ {”A”, ”B” . . . ”Z”} then

p := ordinal position of c in the alphabet (A = 1,B = 2...)
v := p + 9

else if c = ” ∗ ” then v := 36
else if c = ”@” then v := 37
else if c = ”#” then v := 38

if i is even then v := v ∗ 2

sum := sum + int(v div 10) + (v mod 10)

return (10 - (sum mod 10)) mod 10

CUSIP check sum (simplified version)

Notes about algorithm shown above:

◮ Expression sum + int(v div 10) + (v mod 10) can be simplified.

◮ Condition “i is even” can be moved to v := assignments.

◮ return statement uses “sum mod 10”, so we can calculate this value
within the loop. So, value of sum within a loop can just be modified as
sum = sum + f (cusip[i], i) mod 10.

Algorithm 5: Calculate 9th CUSIP character (simplified version)

input : CUSIP characters cusip[i], 1 ≤ i ≤ 8
output: 9th CUSIP character which is a check sum
sum := 0
for 1 ≤ i ≤ 8 do

sum := (sum + f (i , cusip[i])) mod 10
end
return (10− sum) mod 10

CUSIP finite state automaton

endstart

s10

s11

s12

s13

s14

s15

s16

s17

s18

s19

s20

s21

s22

s23

s24

s25

s26

s27

s28

s29

s80

s81

s82

s83

s84

s85

s86

s87

s88

s89

s30

s31

s32

s33

s34

s35

s36

s37

s38

s39

s40

s41

s42

s43

s44

s45

s46

s47

s48

s49

s50

s51

s52

s53

s54

s55

s56

s57

s58

s59

s60

s61

s62

s63

s64

s65

s66

s67

s68

s69

s70

s71

s72

s73

s74

s75

s76

s77

s78

s79

Partial transition function of CUSIP finite state automaton

start

s10 s11

A

s12

B

s13 s14 s15 s16

6

s17 s18

Z

s19

s20 s21 s22 s23 s24 s25

A

s26 s27

B

s28 s29

C

Partial transition function of CUSIP WFST

◮ Conditional probability of correct symbol Scorrect given Sseen for position i .

P i (Scorrect | Sseen) :=

∑N

j=1[S
i
j,correct == Scorrect] ∗ [S

i
j,seen == Sseen]

∑N

j=1[S
i
j,seen == S i

j,seen]

where N is the number of pairs in dataset, 1 ≤ i ≤ 8

start

s10 s11

A // P(A|A) 3 // P(A|3)

s12

1 // P(B|1) 2 // P(B|2) * // P(B|*)

s13 s14 s15 s16

5 // P(6|5) 6 // P(6|6) * // P(6|*)

s17 s18

2 // P(Z|2) 3 // P(Z|3) 4 // P(Z|4)

s19

s20 s21 s22 s23 s24 s25

* // P(A|*)

s26 s27

* // P(B|*)

s28 s29

* // P(C|*)

OCR CUSIP Correction. Algorithm.

Algorithm: given 9 character CUSIP as input, the corrected
CUSIP is the sequence of output symbols of WFST along the best
path from start to finite state. Best path is the path with
maximum product of conditional probabilities.
Question: Hidden Markov Model? Maximization of Joint
Probability? Weighted Finite State Transducer?
Results: 99.7% accuracy on 5-fold cross-validation. Two diverse
datasets of size 106 pairs. Input datasets correctness: 65% and
95%.
Note: Probabilities must be smoothed in order to avoid
multiplying by zero. Examples: Good Turing, Add-lambda, Katz
smoothing etc.

OCR IBAN Correction. Approach.

IBAN is an internationally agreed system of identifying bank
accounts across national borders.
IBAN format is specified by regular expression using letters and
digits. Example (Belarus): “BYkk bbbb aaaa cccc cccc cccc cccc”
where “b” = national bank or branch code, “a” – balance account
number, “c” – account number and “k” – check sum.
IBAN is validated by converting it into an integer and performing
a basic mod97 operation (“kk” portion of IBAN).

Approach: same as for CUSIP correction – WFST based on IBAN
regular expression and “mod 97” check sum.

The End

