
SMT Solvers in Application to Static and
Dynamic Symbolic Execution: a Case Study

Nikita Malyshev, Irina Dudina, Daniil Kutz, Alexander Novikov, Sergey Vartanov
December 5, 2019

Ivannikov Institute for System Programming
of the RAS

Lomonosov Moscow State University

Static and Dynamic Symbolic Execution

Svace
• Static analyzer for C, C++, Java
code

• Performs many types of
analyses including
path-sensitive analysis

• Utilizes symbolic execution
for solving path conditions

Anxiety
• Dynamic symbolic execution
framework

• Finds new feasible execution
paths given several concrete
ones

• Generates input values for
such paths to be reached

1

Solvers in Symbolic Execution

Path-Sensitive Static Analysis

z > 3

a > z

p = 0 Null(p) = T
Reach = (z > 3) ∧ (a > z)

a > 1

*p = a

Null(p) = (a > z) ∧ (z > 3)
Reach = T

Null(p) ∧ Reach ∧ ErrCond(p)

(a > z) ∧ (z > 3) ∧ (a > 1) ∧ (p = 0)

Null(p) = T ∧ (a > z)
Reach = (z > 3)

Reach = (a > 1)
Null(p) = (a > z) ∧ (z > 3)

2

Path-Sensitive Static Analysis: Svace

Control-flow graph

call graph

analysis
direction

function
summary

1. Formulas become larger towards the end of analysis
2. Similar formulas are produced by checkers on similar code
3. Maximum summary size impacts precision of the analysis

3

Dynamic Symbolic Execution

z > 3

a > z

p = 0

a > 1

*p = a

Path condition: c1 ∧ c2 ∧ d1 ∧ c3 ∧ d2

d2

d1

c1

c2

c3

z > 3

a > z

p = 0

a > 1

*p = a

New path condition: c1

d1

c1

c2

c3

c1

c2

New path condition: c1 ∧ c2

New path condition: c1 ∧ c2 ∧ d1 ∧ c3

c3

d2

4

Dynamic Symbolic Execution: Anxiety

5

Svace and Anxiety: Similarities and Differences

1. Logics
• ”Core” for both — QF_BV

2. Models
• Svace uses models to builds error trace
• Anxiety generates new inputs from models

3. Formulas
• Anxiety: single point in code — multiple paths through —
multiple formulas for every path

• Svace: single point in code — multiple paths through —
single formula combining all paths

6

Technical Details and Pitfalls

1. Integrated vs. separated solvers.

Problem. If solver is integrated into analysis process by using API, its
crashes can not be always handled properly.

Solution. Run solver as separate process instead.

Details. We discovered that solvers might crash on some inputs.
While inter-process communication and conversion of requests to
SMT-LIB 2 incur additional overhead, such design allows to handle
crashes just by restarting the solver.

7

Technical Details and Pitfalls

2. Interactive solving.

Problem. Starting new process for every request costs pretty much.

Solution. Use reset command to clean solver’s state after every
request.

Details. Some solvers tend to crash when reset repeats many times.
This way, it is necessary to keep track of the solver’s state and restart
it every so often. Also a few solvers may not support it (Boolector).

7

Technical Details and Pitfalls

3. Following standard.

Problem. Different solvers implement standard rather loosely.

Solution. Correct formulas by hand.

Details. For example, some do not parse n-ary and-s or concat-s
while others do. This way, despite SMT-LIB 2 intended purpose,
jumping from one solver to another still requires a fair effort to do.

7

Technical Details and Pitfalls: Svace

4. Parallel solving.

Problem. Most solvers do not support parallel solving.

Solution. We don’t need it anyway.

Details. Sometimes only a few functions are analyzed at a time, as
everything else is higher on the call graph and requires their analysis
result. Thus, parallelism in solver itself is not mandatory though it
may be desired.

8

Technical Details and Pitfalls: Svace

5. Caching requests.

Problem. Many requests to solver are actually the same.

Solution. Cache requests.

Details. We have found two reasons: that different checkers verify
the same code and that there are very similar parts of code. With
caching we managed to save 22% of total time for SMT solving in
Svace.

8

Technical Details and Pitfalls: Svace

6. Deterministic time limit.

Problem. For industrial purposes, analysis needs to be deterministic
— the results must not differ for subsequent runs on the same code.

Solution. Use solver with the option to set some other limit than just
CPU time.

Details. Not so many solvers support deterministic limits, and most
of corresponding options are not very reliable. Currently, Z3 is maybe
the only solver with good way to set such limit.

8

Technical Details and Pitfalls: Anxiety

7. Incremental solving.

Problem. Solving similar requests independently is a waste of time.

Solution. Use incremental solving with push and pop commands.

Details. Incremental solving may be used to invert a number of
consecutive branch conditions of one path condition. This allows the
solver to construct lemmas learned for the common parts just once.

9

Technical Details and Pitfalls: Anxiety

8. Different models.

Problem. If the formula is satisfiable, there can be more than one
model.

Solution. Have a way to choose model generation algorithm.

Details. Execution for input data generated from different models
may differ depending on unconstrained values. This may have a
significant impact on the analysis process, number of paths executed
and defects detected.

9

Solver Comparison

Choosing Solvers

Table 1: Solvers competed in SMTCOMP 2018

M
ul
ti-

pl
at
fo
rm

Fr
ee

co
m
m
er
ci
al

us
e

Pa
ra
lle
l

so
lv
in
g

De
te
rm
in
is
tic

lim
it

In
cr
em

en
ta
l

so
lv
in
g

MathSAT X X

Yices2 X X X

Z3 X X X X

Boolector X X

CVC4 X X X X

Minkeyrink * X X X

STP * X X X X X

10

Experimental Setup

1. Projects to analyze: Android 5 and Tizen 5 (Svace); JasPer
JPEG-2000, FAAD, Yodl and others (Anxiety).

2. Requests from analysis were captured and saved.
3. Simulate tools workflow: parallel instances, piping queries,
interactivity (+ for Svace, - for Anxiety), operating time limit (90
seconds).

4. Crashes and TLE’s are UNKNOWNS.

11

Solving Statistics: Svace

Table 2: Statistics for Svace requests

Z3-v4.4.1 Z3-v4.8.5 Yices2 STP CVC4

SAT 98758 98758 98758 98758 98735
UNSAT 63130 63130 63130 63130 63130
UNKNOWN 8 8 8 8 31
Total 161 896 161896 161896 161896 161896

12

Solving Statistics: Anxiety

Table 3: Statistics for Anxiety requests

Z3-v4.4.1 Z3-v4.8.5 Yices2 STP CVC4 Boolector

SAT 14072 14072 14072 14072 14072 14072
UNSAT 31280 31280 31280 31280 31280 31280
UNKNOWN 0 0 0 0 0 0
Total 45 352 45352 45352 45352 45352 45352

13

Solving Time: Svace

Yices2 Z3-v4.8.5 CVC4 STP Z3-v4.4.1
0

1500

3000

10500

18000

To
ta
l s
ol
vi
ng

 ti
m
e,
 s

 1184

 2460

18198

 1863
 2279

Figure 1: Total time needed to solve all requests

14

Cumulative Distribution: Svace

10−5 10−4 10−3 10−2 10−1 100

Solving time, s

0

20

40

60

80

99
N

um
be

r o
f s

ol
ve

d
fo

rm
ul

as
, %

Yices2
STP
Z3-v4.8.5
CVC4

Figure 2: Percentage of requests taking to solve no more than given time
15

Solving Time: Anxiety

Yices2 Z3-v4.8.5 CVC4 STP Boolector Z3-v4.4.1
0

1500

3000

4500

6000

7500

To
ta
l s

ol
vi
ng

 ti
m
e,
 s

 163

 4877

 7586

 698 619

 3731

Figure 3: Total time needed to solve all requests

16

Cumulative Distribution: Anxiety

10−5 10−4 10−3 10−2 10−1 100

Solving time, s

0

20

40

60

80

99
N

um
be

r o
f s

ol
ve

d
fo

rm
ul

as
, %

Yices2
Boolector
STP
Z3-v4.8.5
CVC4

Figure 4: Percentage of requests taking to solve no more than given time
17

Advanced Experiments

Incremental Solving (Anxiety): Motivation

To get all possible paths from a single path condition
d1 ∧ c1 ∧ · · · ∧ dn ∧ cn, we can either solve one incremental query:

An = d1〈∧c1〉 ∧ c1 ∧ d2〈∧c2〉 ∧ c2 ∧ . . . ∧ dn ∧ cn,

or n non-incremental queries:

B1 = d1 ∧ c1,
B2 = d1 ∧ c1 ∧ d2 ∧ c2,
. . .

Bn = d1 ∧ c1 ∧ d2 ∧ c2 ∧ . . . ∧ dn ∧ cn,

18

Incremental Solving (Anxiety): Results

Every line on the graph corresponds to a single base path. Every
point on a line corresponds to an incremental query Ai, consisting of
conditions up to i index and first i non-incremental queries.

19

Solvers Portfolio (Svace): Motivation

Some Svace requests still take more time to solve with Yices2 than
with Z3 or STP.

−100

−75

−50

−25

0

25

50

75

100
Pe

rc
en

ta
ge

 o
f w

in
ni

ng
 ti

m
e,

 %
 Yices

 Yices

 Yices

Z3-v4.8.5

Z3-v4.8.5

 CVC4

Z3-v4.8.5
 CVC4

 STP

 CVC4

 STP

 STP 20

Solvers Portfolio (Svace): Special Aspects

Classic approach — SATZilla, a SAT solver portfolio. Was then adapted
for bit-vector solving. Has:

• pre- and backup solvers;
• many expensive features;
• huge time limits.

Problem: very little average solving time for Svace.

Consequences:

• no pre- or post-processing;
• only most lightweight features of formula, BUT some unique
analysis properties are also used as features.

21

Solvers Portfolio (Svace): Results

We tried different machine-learning regression models: ridge,
random forest, linear, support vector. We were summing for every
request the solving time of whatever solver predicted to be the best.

Ideal RR RFR LR SVR Yices2 STPZ3-old Z3-new
0

50

100

150

200

250

So
lv
in
g
tim

e,
 s

 90
 106 107 110

 140
 118

 186

 227
 246

Ideal solution is an abstract algorithm that always knows which
solver is best.

22

Conclusion

Symbolic Execution

• Hundreds of thousands formulas may be produced in one
instrument run.

• The majority of the formulas are solved in tenths and
hundredths of seconds, while a few requests may be incredibly
complex.

• For both static and dynamic symbolic execution many formulas
are built on the points of a single path. This induces high
affinity and common subformulas.

• Dynamic symbolic execution workflow highly depends on
models generated. Ability to choose from several models may
increase number of paths generated.

23

Solvers

• In terms of produced answers all solvers are nearly identical.
• For both of our tools, Yices2 proved to be the best at solving.
• Deterministic time limit is required for analyses relying on
reproducibility of results.

• Well-implemented reset is important for huge number of
symbolic execution requests.

• Incremental solving perfectly suits symbolic execution problem.

24

	Solvers in Symbolic Execution
	Solver Comparison
	Advanced Experiments
	Conclusion

