
Constexpr: a Great Good but Wrong Idea

Yauhen Klimiankou

klimenkov@bsuir.by

Evgeny.Klimenkov@gmail.com

Belarusian State University of Informatics and Radioelectronics
.

IV ISP RAS Open

5th December 2019

Yauhen Klimiankou 5-12-2019 Belarusian State University of Informatics and Radioelectronics 1 / 18

klimenkov@bsuir.by
Evgeny.Klimenkov@gmail.com


Compiler Optimizations

Evaluation based compiler optimizations:

• Constant Folding (CF) (prior to 1968)
compile-time evaluation of simple arithmetic expressions consisting of nu-

meric literals

• Compile-Time Function Execution (CTFE) (2007)
compile-time evaluation of function calls

• Compile-Time Evaluations (CTE)
any computations involving constant data known at compile-time and

which can be performed by compiler without effect on the program be-

haviour

Yauhen Klimiankou 5-12-2019 Belarusian State University of Informatics and Radioelectronics 2 / 18



Compiler Optimizations

Evaluation based compiler optimizations:

• Constant Folding (CF) (prior to 1968)
compile-time evaluation of simple arithmetic expressions consisting of nu-

meric literals

• Compile-Time Function Execution (CTFE) (2007)
compile-time evaluation of function calls

• Compile-Time Evaluations (CTE)
any computations involving constant data known at compile-time and

which can be performed by compiler without effect on the program be-

haviour

Yauhen Klimiankou 5-12-2019 Belarusian State University of Informatics and Radioelectronics 2 / 18



Compiler Optimizations

Evaluation based compiler optimizations:

• Constant Folding (CF) (prior to 1968)
compile-time evaluation of simple arithmetic expressions consisting of nu-

meric literals

• Compile-Time Function Execution (CTFE) (2007)
compile-time evaluation of function calls

• Compile-Time Evaluations (CTE)
any computations involving constant data known at compile-time and

which can be performed by compiler without effect on the program be-

haviour

Yauhen Klimiankou 5-12-2019 Belarusian State University of Informatics and Radioelectronics 2 / 18



CTFE in Programming Languages

• C#
No CTFE support, CF is explicitly required, employs many more semantic

rules and performs many more compile-time checks

• Haskell
CTE based on lifting in TemplateHaskell extension, explicit boundary between

CTE and RTE

• Scala
CTE based on macros receiving AST and producing AST which will replace

the original one

• Rust
CTFE support is similar to the approach taken by C++, only pure and

deterministic functions using limited language facilities are CTFE-eligible

• D
Explicit support of CTFE, but does not introduce any language idioms for

that purposes

Yauhen Klimiankou 5-12-2019 Belarusian State University of Informatics and Radioelectronics 3 / 18



CTFE in Programming Languages

• C#
No CTFE support, CF is explicitly required, employs many more semantic

rules and performs many more compile-time checks

• Haskell
CTE based on lifting in TemplateHaskell extension, explicit boundary between

CTE and RTE

• Scala
CTE based on macros receiving AST and producing AST which will replace

the original one

• Rust
CTFE support is similar to the approach taken by C++, only pure and

deterministic functions using limited language facilities are CTFE-eligible

• D
Explicit support of CTFE, but does not introduce any language idioms for

that purposes

Yauhen Klimiankou 5-12-2019 Belarusian State University of Informatics and Radioelectronics 3 / 18



CTFE in Programming Languages

• C#
No CTFE support, CF is explicitly required, employs many more semantic

rules and performs many more compile-time checks

• Haskell
CTE based on lifting in TemplateHaskell extension, explicit boundary between

CTE and RTE

• Scala
CTE based on macros receiving AST and producing AST which will replace

the original one

• Rust
CTFE support is similar to the approach taken by C++, only pure and

deterministic functions using limited language facilities are CTFE-eligible

• D
Explicit support of CTFE, but does not introduce any language idioms for

that purposes

Yauhen Klimiankou 5-12-2019 Belarusian State University of Informatics and Radioelectronics 3 / 18



CTFE in Programming Languages

• C#
No CTFE support, CF is explicitly required, employs many more semantic

rules and performs many more compile-time checks

• Haskell
CTE based on lifting in TemplateHaskell extension, explicit boundary between

CTE and RTE

• Scala
CTE based on macros receiving AST and producing AST which will replace

the original one

• Rust
CTFE support is similar to the approach taken by C++, only pure and

deterministic functions using limited language facilities are CTFE-eligible

• D
Explicit support of CTFE, but does not introduce any language idioms for

that purposes

Yauhen Klimiankou 5-12-2019 Belarusian State University of Informatics and Radioelectronics 3 / 18



CTFE in Programming Languages

• C#
No CTFE support, CF is explicitly required, employs many more semantic

rules and performs many more compile-time checks

• Haskell
CTE based on lifting in TemplateHaskell extension, explicit boundary between

CTE and RTE

• Scala
CTE based on macros receiving AST and producing AST which will replace

the original one

• Rust
CTFE support is similar to the approach taken by C++, only pure and

deterministic functions using limited language facilities are CTFE-eligible

• D
Explicit support of CTFE, but does not introduce any language idioms for

that purposes

Yauhen Klimiankou 5-12-2019 Belarusian State University of Informatics and Radioelectronics 3 / 18



C++: Template-Based Metaprogramming

• 1989: Stroustrup has proposed a concept of templates
aim – add parametric polymorphism to C++, source aim – enhancement

of standard library by containers support (introduction of STL)

• 1994: Erwin Unruh has discovered template-based CTFE
Template-based CTFE was introduced in C++ unintentionally and, in fact,

is side effect of C++ means for parametric polymorphism

• Templates have unintentionally added a new Turing complete
functional programming language for CTFE inside C++.

• C++ community has many hackers. What could be better for
a hacker than using means for purposes for which they are not
intended? → Template Metaprogramming discipline.

• Template Metaprogramming is discouraged in the industrial
programming domain. Reasons: code is hard to write, read,
understand, debug, and maintain.

Yauhen Klimiankou 5-12-2019 Belarusian State University of Informatics and Radioelectronics 4 / 18



C++: Template-Based Metaprogramming

• 1989: Stroustrup has proposed a concept of templates
aim – add parametric polymorphism to C++, source aim – enhancement

of standard library by containers support (introduction of STL)

• 1994: Erwin Unruh has discovered template-based CTFE
Template-based CTFE was introduced in C++ unintentionally and, in fact,

is side effect of C++ means for parametric polymorphism

• Templates have unintentionally added a new Turing complete
functional programming language for CTFE inside C++.

• C++ community has many hackers. What could be better for
a hacker than using means for purposes for which they are not
intended? → Template Metaprogramming discipline.

• Template Metaprogramming is discouraged in the industrial
programming domain. Reasons: code is hard to write, read,
understand, debug, and maintain.

Yauhen Klimiankou 5-12-2019 Belarusian State University of Informatics and Radioelectronics 4 / 18



C++: Template-Based Metaprogramming

• 1989: Stroustrup has proposed a concept of templates
aim – add parametric polymorphism to C++, source aim – enhancement

of standard library by containers support (introduction of STL)

• 1994: Erwin Unruh has discovered template-based CTFE
Template-based CTFE was introduced in C++ unintentionally and, in fact,

is side effect of C++ means for parametric polymorphism

• Templates have unintentionally added a new Turing complete
functional programming language for CTFE inside C++.

• C++ community has many hackers. What could be better for
a hacker than using means for purposes for which they are not
intended? → Template Metaprogramming discipline.

• Template Metaprogramming is discouraged in the industrial
programming domain. Reasons: code is hard to write, read,
understand, debug, and maintain.

Yauhen Klimiankou 5-12-2019 Belarusian State University of Informatics and Radioelectronics 4 / 18



C++: Template-Based Metaprogramming

• 1989: Stroustrup has proposed a concept of templates
aim – add parametric polymorphism to C++, source aim – enhancement

of standard library by containers support (introduction of STL)

• 1994: Erwin Unruh has discovered template-based CTFE
Template-based CTFE was introduced in C++ unintentionally and, in fact,

is side effect of C++ means for parametric polymorphism

• Templates have unintentionally added a new Turing complete
functional programming language for CTFE inside C++.

• C++ community has many hackers. What could be better for
a hacker than using means for purposes for which they are not
intended? → Template Metaprogramming discipline.

• Template Metaprogramming is discouraged in the industrial
programming domain. Reasons: code is hard to write, read,
understand, debug, and maintain.

Yauhen Klimiankou 5-12-2019 Belarusian State University of Informatics and Radioelectronics 4 / 18



C++: Template-Based Metaprogramming

• 1989: Stroustrup has proposed a concept of templates
aim – add parametric polymorphism to C++, source aim – enhancement

of standard library by containers support (introduction of STL)

• 1994: Erwin Unruh has discovered template-based CTFE
Template-based CTFE was introduced in C++ unintentionally and, in fact,

is side effect of C++ means for parametric polymorphism

• Templates have unintentionally added a new Turing complete
functional programming language for CTFE inside C++.

• C++ community has many hackers. What could be better for
a hacker than using means for purposes for which they are not
intended? → Template Metaprogramming discipline.

• Template Metaprogramming is discouraged in the industrial
programming domain. Reasons: code is hard to write, read,
understand, debug, and maintain.

Yauhen Klimiankou 5-12-2019 Belarusian State University of Informatics and Radioelectronics 4 / 18



C++: Generalized Constant Expression

• 2003: Gabriel Dos Reis has shared his thoughts on the topic.

• 2006: Reis and Stroustrup have formulated the concept of Gen-
eralized Constant Expressions. The proposal introduces a new
specifier – constexpr.
• Motivation is an extension of constant folding mechanisms:

• Embarrassments with numeric limits constants
• Convoluted bitmask types
• Fragile enumerated types

• However, on practice, constexpr is commonly considered as a
mean for hand-driven developer-guided code optimization.

Yauhen Klimiankou 5-12-2019 Belarusian State University of Informatics and Radioelectronics 5 / 18



C++: Generalized Constant Expression

• 2003: Gabriel Dos Reis has shared his thoughts on the topic.

• 2006: Reis and Stroustrup have formulated the concept of Gen-
eralized Constant Expressions. The proposal introduces a new
specifier – constexpr.

• Motivation is an extension of constant folding mechanisms:
• Embarrassments with numeric limits constants
• Convoluted bitmask types
• Fragile enumerated types

• However, on practice, constexpr is commonly considered as a
mean for hand-driven developer-guided code optimization.

Yauhen Klimiankou 5-12-2019 Belarusian State University of Informatics and Radioelectronics 5 / 18



C++: Generalized Constant Expression

• 2003: Gabriel Dos Reis has shared his thoughts on the topic.

• 2006: Reis and Stroustrup have formulated the concept of Gen-
eralized Constant Expressions. The proposal introduces a new
specifier – constexpr.
• Motivation is an extension of constant folding mechanisms:

• Embarrassments with numeric limits constants
• Convoluted bitmask types
• Fragile enumerated types

• However, on practice, constexpr is commonly considered as a
mean for hand-driven developer-guided code optimization.

Yauhen Klimiankou 5-12-2019 Belarusian State University of Informatics and Radioelectronics 5 / 18



C++: Generalized Constant Expression

• 2003: Gabriel Dos Reis has shared his thoughts on the topic.

• 2006: Reis and Stroustrup have formulated the concept of Gen-
eralized Constant Expressions. The proposal introduces a new
specifier – constexpr.
• Motivation is an extension of constant folding mechanisms:

• Embarrassments with numeric limits constants
• Convoluted bitmask types
• Fragile enumerated types

• However, on practice, constexpr is commonly considered as a
mean for hand-driven developer-guided code optimization.

Yauhen Klimiankou 5-12-2019 Belarusian State University of Informatics and Radioelectronics 5 / 18



C++: Generalized Constant Expression

1 constexpr int f(int a, int b)
2 {
3 return a + b;
4 }
5
6 enum E
7 {
8 E 1 5 = f(1, 5) // 1
9 };

10
11 int main()
12 {
13 int buf[f(1, 5)]; // 2
14
15 switch(buf[0])
16 {
17 case f(1, 5): /* ... */ break; // 3
18 }
19
20 return 0;
21 }

Yauhen Klimiankou 5-12-2019 Belarusian State University of Informatics and Radioelectronics 6 / 18



C++: Compile-Time Evaluations

1 void C::m()
2 {
3 uint32 t b = 0x00000001;
4 uint32 t m = 0xffffffff;
5
6 m += m;
7
8 for(uint32 t i= b + 1; i != 13; i = b + 1)
9 {

10 b = i;
11 m += m;
12 }
13
14 bits = b;
15 mask = m;
16 }

Neither CF nor CTFE is applicable here!
However, this is a CTE-eligible code!

Yauhen Klimiankou 5-12-2019 Belarusian State University of Informatics and Radioelectronics 7 / 18



C++: critique of constexpr

1 constexpr int Sum1(int a, int b)
2 {
3 return a + b;
4 }
5
6 int Sum2(int a, int b)
7 {
8 return a + b;
9 }

10
11 void f()
12 {
13 constexpr int a = Sum2(1, 2);
14 constexpr int b = Sum1(3, 4);
15 int c = Sum2(5, 6);
16 int d = Sum1(7, 8);
17
18 enum D { DC = Sum2(9, 0) };
19 enum E { EC = Sum1(1, 9) };
20 }

Yauhen Klimiankou 5-12-2019 Belarusian State University of Informatics and Radioelectronics 8 / 18



C++: D counterexample

1 int Sum(int a, int b)
2 {
3 return a + b;
4 }
5
6 void f()
7 {
8 static int a = Sum(1, 2); // compile-time
9 int b = Sum(3, 4); // run-time

10
11 enum D
12 {
13 DC = Sum(7, 8), // compile-time
14 EC = Sum(9, 0), // compile-time
15 }
16 }

Yauhen Klimiankou 5-12-2019 Belarusian State University of Informatics and Radioelectronics 9 / 18



C++: complexity breeds complexity

• C++ de facto is not one but three programming languages:
• General object-oriented imperative C++.
• Functional template-based metaprogramming language.
• Hyper-reduced C++ for generalized constant expressions (GCEC++).

• There are three reasons for GCEC++:
• Cross-compiler portability of the source code.
• Complexity of C++ makes it unfriendly for AST-interpretation.
• Introduction of specifier constexpr makes interpreter limita-

tions explicit to the programmer.

Language Number of Pages

D 311

Rust 417

C 461

PL/I 564

Ada 1221

C++ 2247

Yauhen Klimiankou 5-12-2019 Belarusian State University of Informatics and Radioelectronics 10 / 18



C++: complexity breeds complexity

• C++ de facto is not one but three programming languages:
• General object-oriented imperative C++.
• Functional template-based metaprogramming language.
• Hyper-reduced C++ for generalized constant expressions (GCEC++).

• There are three reasons for GCEC++:
• Cross-compiler portability of the source code.
• Complexity of C++ makes it unfriendly for AST-interpretation.
• Introduction of specifier constexpr makes interpreter limita-

tions explicit to the programmer.

Language Number of Pages

D 311

Rust 417

C 461

PL/I 564

Ada 1221

C++ 2247

Yauhen Klimiankou 5-12-2019 Belarusian State University of Informatics and Radioelectronics 10 / 18



C++: missed lessons

Specifier constexpr is a positive optimization hint for compiler.
However, the C++ already has an experience of introduction of
optimization hints:
• Positive optimization hints:

• register – suggests the compiler to store the variable in a CPU
register.
removed in C+++17 as valueless

• inline – enforces inline expansion optimization and, as a side
effect, changes linker behaviour.
Primary meaning has been lost. Currently works only as linker beha-

viour modifier.

• Negative optimization hints:
• volatile – prevents optimization of access to a variable and

enforces compiler to keep variable value in memory.
Continues to play an essential role in asynchronous and multithreaded

applications.

Yauhen Klimiankou 5-12-2019 Belarusian State University of Informatics and Radioelectronics 11 / 18



C++: missed lessons

MISSED LESSON

Programming language design must not contain features
which do not add new semantics.

or

Programming language design must not include
positive optimization hints or other means dedicated solely

for optimization enforcement.

Yauhen Klimiankou 5-12-2019 Belarusian State University of Informatics and Radioelectronics 12 / 18



C++: a look at C++ future

• avalanche of interest to the CTFE in the C++ community.

• expanding of GCEC++ language.

• if constexpr has been added in C++17.
• C++20:

• further expanding of GCEC++ language.
• further propogation of constexpr into C++ standard library.
• consteval – restricts function usage as CTFE-only.
• constinit – restricts variable usage as CTFE-only.

We can observe further growth of language complexity
originated by introduction of constexpr specifier.

Yauhen Klimiankou 5-12-2019 Belarusian State University of Informatics and Radioelectronics 13 / 18



C++: drawbacks

• Usage of constexpr for generalization of constant expressions
for code generation is extremely uncommon. Actual usage is
almost exclusively for code optimization purposes.

• Compiler can perform generalization of constant expressions for
code generation transparently (D as an example).
• The specifier constexpr introduces weak contract to the lan-

guage:
• CTE-eligibility can be deduced by the compiler automatically.
• Encourages code duplication.
• Encourages code offloading into headers (longer compilation

time, weaker encapsulation).
• Breaks cross-compiler code portability (the limits for resources

involved in CTE-evaluation can not be formally specified).
• CTE-eligibility is a property of the code, but not of function

semantics.
• Future growth of C++ language complexity.

Yauhen Klimiankou 5-12-2019 Belarusian State University of Informatics and Radioelectronics 14 / 18



C++: drawbacks

Code example from P0595R1, 2018-05-04

1 constexpr double power(double b, int x) {
2 if (std::is constant evaluated() && x >= 0) {
3 // A constant-evaluation context: Use a
4 // constexpr-friendly algorithm.
5 double r = 1.0, p = b;
6 unsigned u = (unsigned)x;
7 while (u != 0) {
8 if (u & 1) r *= p;
9 u /= 2;

10 p *= p;
11 }
12 return r;
13 } else {
14 // Let the code generator figure it out.
15 return std::pow(b, (double)x);
16 }
17 }

Yauhen Klimiankou 5-12-2019 Belarusian State University of Informatics and Radioelectronics 15 / 18



C++: missing features

• Advanced code semantics checks in CTE-context.

• Negative optimization hint for exclusion of aspect-oriented code
from evaluation in CTE-context

Yauhen Klimiankou 5-12-2019 Belarusian State University of Informatics and Radioelectronics 16 / 18



C++: last but not least argument

We have designed and developed an independent tool, which can
be considered to be an external post-build optimizer, which ap-
plies CTE to executable binaries, based on ISA-specification of the
target platform.

Experience of designing and usage of this tool shows that:

• Completely automatic application of CTE is applicable for in-
dustrial use.

• 100% coverage of program code by CTE enforcement is achiev-
able.

• CTE enforcement can be performed in a way bounded neither
by the specific programming language in general nor by specific
language constructs or abstractions (reduction of CTE to CTFE
or CF).

• CTE enforcement can be not bounded by translation unit bor-
ders and not prevented by the unavailability of source code.

Yauhen Klimiankou 5-12-2019 Belarusian State University of Informatics and Radioelectronics 17 / 18



Questions?

Yauhen Klimiankou 5-12-2019 Belarusian State University of Informatics and Radioelectronics 18 / 18


	

