
DIY Java Profiling

Roman Elizarov / Роман Елизаров
Devexperts / Эксперт-Система
elizarov at devexperts dot com

Profiling

“Profiling … is the investigation of a program's
behavior using information gathered as the program
executes. The usual purpose of this analysis is to
determine which sections of a program to optimize -
to increase its overall speed, decrease its memory
requirement or sometimes both.”

-- Wikipedia

OptimizeProfile

Why Do-It-Yourself?

What are the problems with tools?
• When you cannot run 3rd party code in

production/live environment
• Reliability concerns

• Compliance concerns

• Tools are often opaque (even if open source)
• In their performance effect

• In their means of operation

• Tools have their learning curve
• While DIY is Fun!

Yes, we work for financial industry

Learning curve?

Learning a tool:

• Pays off if you use it often

• Pays off if it gets you results faster/better

• It is good to know modern tools to avoid NIH syndrome

DIY for knowledge reuse:

• Apply your existing knowledge

• Expand and deepen your existing knowledge

• Know your day-to-day tools (like Java VM) better

Why Java?

Top language since 2001 (TIOBE)

Great for enterprise applications

• Write front & back in the same language

• share code and libraries between them

• Run everywhere

• Windows, Mac OS (typical for front)

• Linux, Solaris (typical for back)

Managed language – makes it easy to profile

Agenda: Java DIY Approaches

Just code it in Java

• Standard Java classes are your friends

Know your JVM features

• -X… and -XX:… JVM options are your friends

Use bytecode manipulation

• Java Virtual Machine specification is your friend

The knowledge of all the above gets
you more that just profiling!

Agenda: Profiling types

Profiling

CPU

Times/Calls Sampling

Memory

Usage Allocation

CPU profiling: Wall clock time/Calls

Account getAccount(AccountKey key) {
long startTime = System.currentTimeMillis();
checkAccountPermission(key);
Account account = AccountCache.lookupAccount(key);
if (account != null) {

Profiler.record(“getAccount.cached”,
System.currentTimeMillis() - startTime);

return account;
}
account = AccountDAO.loadAccount(key);
AccountCache.putAccount(account);
Profiler.record(“getAccount.loaded”,

System.currentTimeMillis() - startTime);
return account;

}

Straight in code

Goes to DB, slow

CPU profiling: Wall clock time/Calls

Profiler class implementation can be as simple
as concurrent map

• Maps string keys to any stats you want

• Total number of calls, total time, max time

• Easy to compute avg time

• Can store histograms and compute percentiles

• Periodically dump stats to console/logs

• Report stats via JMX, HTTP, or <insert approach
that you use in your project>

CPU profiling: Wall clock time/Calls

When to use
• Relatively “big” business methods

• Where number of invocations per second are under
1000s and time per invocation is measured in ms.

• If you need to know the number of calls and the
actual (wall clock) time spent in the method

• If you need to trace different execution paths

• If you need to integrate profiling into your code as
“always on” feature

Shorter/faster methods?

CPU Profiling: Short/Fast Calls

static final AtomicLong lookupAccountCalls =
new AtomicLong();

Account lookupAccount(AccoutKey key) {
lookupAccountCalls.incrementAndGet();
return accountByKey.get(key);

}

Just count

Way under 1ms

CPU Profiling: Short/Fast Calls

When to use
• If number of calls is in the order of 10k per second

• If you don’t need to measure time spent
• Counting distorts time for very short methods

• Attempt to measure time distorts it even more

• To really measure time go native with rdtsc on x86

Solution for 100k+ calls per second?
• Sampling!

CPU Profiling: Sampling

JVM has ability to produce “thread dump”

• Press Ctrl+Break in Windows console

• “kill -3 <pid>” on Linux/Solaris

If program spends most of its time on one line:
double[][] multiply(double[][] a, double [][] b) {

int n = a.length, r = a[0].length, m = b[0].length;
double[][] c = new double[n][m];
for (int i = 0; i < n; i++)

for (int j = 0; j < m; j++)
for (int k = 0; k < r; k++)

c[i][j] += a[i][k] * b[k][j];
return c;

}

Hotspot

CPU Profiling: Sampling

You get something like this on the console:

Full thread dump Java … <JVM version info>

<other threads here>

"main" prio=6 tid=0x006e9c00 nid=0x18d8 runnable
java.lang.Thread.State: RUNNABLE

at YourClass.multiply(YouClass.java:<lineno>)
at <the context of the call> …

CPU Profiling: Sampling

Hotspot – is where the most of CPU is spent

Next time you need to find hotspot
• Don’t reach for profiling tools

• Just try a single thread dump first

• Multiple thread dumps will help you verify it

You can use “jstack <pid>”
• Gets more detailed info about native methods

with “-m” option on Solaris

CPU Profiling: More thread dumps

More ideas
• Redirect output to a file

• Use a script to do “kill -3” every 3 seconds
• Minimal impact on system stability (TD is well tested)

• Write a simple code to parse resulting file
• Count a number of occurrences of certain methods

• Analyze traces to get better data than any 3rd party tool
– Figure what methods block going to DB or Network

– Figure what methods block synchronizations

– Figure out what you need to know

CPU Profiling: Integration

You can get “thread dump” programmatically:

• See Thread.getAllStackTraces

• Or Thread.getStackTrace
– If you’re interested in a particular one, like Swing EDT

• Great and lean way to integrate “always on”
profiling into end-user Java application or server

CPU Profiling: Caveats

Thread dumps stop JVM at “safe point”

• You get a point of the nearest safepoint

• Not necessarily the hotspot itself

The work-around: Native Profiling

• Works via undocumented “async threadump”

• Hard to get from inside of Java (need native code)

• That’s where you’d rather use tool like Intel VTune,
AMD CodeAnalyst, Oracle Solaris Studio Performance
Analyzer

Memory usage profiling

Use “jmap –histo <pid>”

• Use “jps” to find pids of your java processes

• You get something like this:

num #instances #bytes class name
--

1: 772 115768 [C
2: 8 72664 [I
3: 77 39576 [B
4: 575 13800 java.lang.String

… <etc>

char[], top consumer

Total number of bytes consumed

Memory usage profiling caveats

You get all objects in heap

• Including garbage

• Can make a big difference

• Use “jmap -histo:live <pid>”

• Will do GC before collecting histogram
– Slow, the process will be suspended

• Will work only on live process (as GC needs safepoint)

You don’t know where allocation was made
• On fast & DIY solution to this problem later

More useful JVM options

-XX:+PrintClassHistogram
• on Ctrl-Break or “kill -3” gets “jmap -histo”

-XX:+HeapDumpOnOutOfMemoryError
• Produces dump in hprof format
• You can use tools offline on the resulting file
• No need to integrate 3rd party tools into live JVM

• But still get many of the benefits of modern tools

• Other ways to get HeapDump:
• Use “jmap –dump:<options> <pid>”
• Use HotSpotDiagnostic MBean

– Right from Java via JMX

Memory allocation profiling

You will not see “new MyClass” as a hotspot

• But it will eat your CPU time

• Because time will be spent collecting garbage

Figure out how much you spend in GC

• Use the following options

• -verbose:gc or -XX:+PrintGC or -XX:+PrintGCDetails

• -XX:+PrintGCTimeStamps

• Worry if you spend a lot

Memory allocation profiling

Use “-Xaprof” option in your JVM

• Prints something like this on process termination:

Allocation profile (sizes in bytes, cutoff = 0 bytes):

___________Size__Instances__Average__Class________________
555807584 34737974 16 java.lang.Integer

321112 5844 55 [I
106104 644 165 [C
37144 63 590 [B
13744 325 42 [Ljava.lang.Object;

… <the rest>

Top alloc’d

Memory allocation profile

But where is it allocated?

• If you have a clue – just add counting via
AtomicLong in the suspect places

• If you don’t have a clue… just add it everywhere

• Using aspect-oriented programming

• Using bytecode manipulation More DIY style

Bytecode manipulation

Change bytecode instead of source code for all
your profiling needs

• Counting, time measuring

• Decouples profiling from code logic

• Great if you don’t need it always on

• Can do it ahead-of-time and on-the-fly

• Great for tasks like “profile each place of code
where new XXX is invoked”

Bytecode manipulation

ObjectWeb ASM is an open source lib to help

• Easy to use for bytecode manipulation

• Extremely fast (suited to on-the-fly manipulation)

ClassReader ClassVisitor ClassWriter

MethodVisitor

Bytecode manipulation with ASM
class AClassVisitor extends ClassAdapter {

public MethodVisitor visitMethod(…) {
return new AMethodVisitor(super.visitMethod(…))

}
}

class AMethodVisitor extends MethodAdapter {
public void visitIntInsn(int opcode, int operand) {

super.visitIntInsn(opcode, operand);
if (opcode == NEWARRAY) {

// add new instructions here into this
// point of class file… Will even preserve
// original source code line numbers

}
}

}

To trace each array allocation

On-the-fly bytecode manipulation

Use java.lang.instrument package

Use “-javaagent:<jarfile>” JVM option

• Will run “premain” method in “Premain-Class”
from jar file’s manifest

• Will provide an instance of Instrumentation

• It lets you install system-wide ClassFileTransformer
– That transforms even system classes!

• It has other useful methods like getObjectSize

Conclusion

Questions?

Know bytecode

Know JVM options

Know Java libraries

