Применение машинного обучения по ансамблю решающих правил для вычисления прогноза дополнительного КИН (Федор Краснов, SECR-2017)

Материал из 0x1.tv

Докладчик
Федор Краснов.jpg
Федор Краснов

Поиск оптимального совместного использования методов моделирования физических процессов и моделирования на основе машинного обучения является одним из приоритетных направлений исследований для ПАО ГазпромНефть.

Рассмотрение частной задачи по моделированию дополнительной нефтеотдачи (КИН) привело авторов к тому, что кроме традиционных вычислительных экспериментов на регулярной решётке более продуктивными могут стать вычисления с помощью алгоритмов машинного обучения. Авторы рассмотрели подход к построению прокси-моделей на основе Random Forest Regressor.

Видео

Презентация

Применение машинного обучения по ансамблю решающих правил для вычисления прогноза дополнительного КИН (Федор Краснов, SECR-2017).pdf Применение машинного обучения по ансамблю решающих правил для вычисления прогноза дополнительного КИН (Федор Краснов, SECR-2017).pdf Применение машинного обучения по ансамблю решающих правил для вычисления прогноза дополнительного КИН (Федор Краснов, SECR-2017).pdf Применение машинного обучения по ансамблю решающих правил для вычисления прогноза дополнительного КИН (Федор Краснов, SECR-2017).pdf Применение машинного обучения по ансамблю решающих правил для вычисления прогноза дополнительного КИН (Федор Краснов, SECR-2017).pdf Применение машинного обучения по ансамблю решающих правил для вычисления прогноза дополнительного КИН (Федор Краснов, SECR-2017).pdf Применение машинного обучения по ансамблю решающих правил для вычисления прогноза дополнительного КИН (Федор Краснов, SECR-2017).pdf Применение машинного обучения по ансамблю решающих правил для вычисления прогноза дополнительного КИН (Федор Краснов, SECR-2017).pdf Применение машинного обучения по ансамблю решающих правил для вычисления прогноза дополнительного КИН (Федор Краснов, SECR-2017).pdf

Примечания и ссылки


Youtube:0 Vimeo:3